
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CLOSURES & THIS

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-14-resources repo to
your computer

2. Open the 14-closures-this folder in your code editor

JAVASCRIPT DEVELOPMENT

CLOSURES &
this

CLOSURES & THIS

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to

‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.
‣ Understand and explain Javascript context.

CLOSURES & THIS

AGENDA
 5

‣ Closures
‣ IIFEs
‣ Module pattern
‣ this

WEEKLY OVERVIEW
CLOSURES & THIS

WEEK 10 React / Final project lab

WEEK 9 CRUD & Firebase / Deploying your app

WEEK 8 Prototypal inheritance / Closures & this

CLOSURES & THIS 7

1. How to enumerate properties of an object with 'for...in' &
'for...of' loops?

2. Why should Class be used in constructors?
3. Since creating a constructor function is a function, what

happens if you add a return to that function? Can it
return things? (Assuming you don't use the new
keyword)

4. How to return JS object from a prototype function?
5. is there any use for manipulating prototypes for APIs?

Exit Ticket Questions

THE MODULE PATTERN
CLOSURES & THIS

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES
CLOSURES & THIS 9

THE MODULE PATTERN
CLOSURES & THIS

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

SCOPE & OBJECTS

GLOBAL SCOPE
 11

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

global variable

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

SCOPE & OBJECTS

FUNCTION SCOPE
 12

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have function scope, which is one
type of local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

SCOPE & OBJECTS

BLOCK SCOPE
 13

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope, which is another type of local scope.
let creates a local variable within
any block, such as an if statement

a variable with block
scope is not accessible
outside of its block

function getTemp() {
 let temp = 75;
 let tempAccess = function() {
 console.log(temp);
 }
 return tempAccess;
}

CLOSURES & THIS

CLOSURES
 14

‣ A closure is an inner function that has access to the outer (enclosing)
function’s variables.

the tempAccess()
function is a
closure

outer function
getTemp() returns
a reference to the
inner function
tempAccess()

CLOSURES & THIS

BUILDING BLOCKS OF A CLOSURE
 15

1. nested functions
2. scope

inner function has access to outer function’s
variables

3. return statement

outer function returns reference to inner function

LET'S TAKE A CLOSER LOOK

CLOSURES & THIS

CLOSURES — KEY POINTS
 17

‣Closures have access to the outer function’s variables
(including parameters) even after the outer function
returns.

‣Closures store references to the outer function’s
variables, not the actual values.

LET'S TAKE A CLOSER LOOK

CLOSURES & THIS

WHAT ARE CLOSURES USED FOR?
 19

‣Turning an outer variable into a private variable
‣Namespacing private functions

LAB — CLOSURES

‣ Understand and explain closures
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

15 min
EXECUTION

‣ starter-code > 1-closures-lab
LOCATION

1. Follow the instructions in app.js to build and test code that uses
a closure.

Immediately-invoked
function expressions

CLOSURES & THIS 21

THE MODULE PATTERN
CLOSURES & THIS

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THIS 23

Immediately-invoked function expression (IIFE)

‣ A function expression that is executed as soon as it is declared
‣ Pronounced “iffy”

CLOSURES & THIS 24

IIFE based on a function expression

let countDown = function() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THIS 25

IIFE based on a function expression

let countDown = function() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THIS 26

IIFE based on a function declaration

(function countDown() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

CLOSURES & THIS 27

IIFE based on a function declaration

(function countDown() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

LET'S TAKE A CLOSER LOOK

THE MODULE PATTERN
CLOSURES & THIS 29

PUTTING IT ALL TOGETHER!
CLOSURES & THIS

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THIS

THE MODULE PATTERN
 31

‣Using an IIFE to return an object literal
‣The methods of the returned object can access the
private properties and methods of the IIFE (closures!),
but other code cannot do this
‣This means specific parts of the IIFE are not available
in the global scope

let counter = function() {
 let count = 0;

}();

CLOSURES & THIS

BUILDING A MODULE
 32

from an IIFE

containing closures
returning an
object literal

return {
 reset: function() {
 count = 0;
 },
 get: function() {
 return count;
 },
 increment: function() {
 count++;
 }
};

CLOSURES & THIS

BENEFITS OF THE MODULE PATTERN
 33

‣Keeps some functions and variables private
‣Avoids polluting the global scope
‣Organizes code into objects

LET'S TAKE A CLOSER LOOK

10 min 1. In app.js, complete the module so it exports methods for
the behaviors described in the comment at the top of the
file.

2. When your code is complete and works properly, the
statements at the bottom of the file should all return the
expected values in the console.

3. BONUS: Add a "tradeIn" method that lets you change the
make of the car and refuels it. Be sure the getMake
method still works after doing a tradeIn.

EXERCISE

TIMING

EXERCISE — CREATE A MODULE

‣ Pair
TYPE OF EXERCISE

‣ start files > 4-modules-exercise
LOCATION

this
CLOSURES & THIS 36

CLOSURES & THIS

HOW IS CONTEXT DECIDED?
 37

•At runtime
•Based on how the function is called

CLOSURES & THIS

CONTEXT RULES
 38

situation what this maps to

method invocation the object that owns the method

constructor function the newly created object

event handler the element that the event was fired from

function invocation the global object (window)

function invocation
(strict mode) undefined

arrow function the context of the caller

LET'S TAKE A CLOSER LOOK

5 min 1. In app.js, read through the code without running it.
2. Predict the results of the two console.log statements.
3. Run the code and check the results against your

predictions. If the results were different, identify why.

EXERCISE

TIMING

EXERCISE — PREDICT CONTEXT

‣ Pairs
TYPE OF EXERCISE

‣ start files > 8-this-exercise
LOCATION

EXERCISE

TIMING

EXERCISE - CLOSURES LAB

LOCATION
‣ starter-code > 9-closures-lab

until 9:20 1. In your editor, open app.js and read the instructions.
2. Create the createTaxCalculator function described in the

instructions.
3. Create 2 variables that call the function you created with

different argument values.
4. Check the console output and verify that you get the

expected results.

CLOSURES & THIS 42

Exit Tickets!
(Class #14)

CLOSURES & THIS

LEARNING OBJECTIVES - REVIEW
 43

‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.
‣ Understand and explain Javascript context.

CLOSURES & THIS 44

NEXT CLASS PREVIEW
In-class lab: Intro to CRUD and Firebase
‣ Explain what CRUD is. (Preview: Create, Read, Update, Delete)
‣ Explain the HTTP methods associated with CRUD.
‣ Implement Firebase in an application.
‣ Build a full-stack app.

Q&A
CLOSURES & THIS 45

