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HELLO!
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1. Pull changes from the svodnik/JS-SF-14-resources repo to 
your computer 

2. Open the 14-closures-this folder in your code editor
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At the end of this class, you will be able to

‣ Understand and explain closures. 
‣ Instantly invoke functions. 
‣ Implement the module pattern in your code. 
‣ Understand and explain Javascript context.
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AGENDA
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‣ Closures 
‣ IIFEs 
‣ Module pattern 
‣ this 



WEEKLY OVERVIEW
CLOSURES & THIS

WEEK 10 React / Final project lab

WEEK 9 CRUD & Firebase / Deploying your app

WEEK 8 Prototypal inheritance / Closures & this
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1. How to enumerate properties of an object with 'for...in' & 
'for...of' loops? 

2. Why should Class be used in constructors?  
3. Since creating a constructor function is a function, what 

happens if you add a return to that function? Can it 
return things? (Assuming you don't use the new 
keyword) 

4. How to return JS object from a prototype function? 
5. is there any use for manipulating prototypes for APIs?

Exit Ticket Questions
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let temp = 75; 
function predict() { 
  console.log(temp); // 75 
} 
console.log(temp); // 75

SCOPE & OBJECTS

GLOBAL SCOPE
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‣ A variable declared outside of a function is accessible everywhere, 
even within functions. Such a variable is said to have global scope.

global variable



let temp = 75; 
function predict() { 
  let forecast = ‘Sun’; 
  console.log(temp + " and " + forecast); // 75 and Sun 
} 
console.log(temp + " and " + forecast);   
// ‘forecast’ is undefined

SCOPE & OBJECTS

FUNCTION SCOPE
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‣ A variable declared within a function is not accessible outside of that 
function. Such a variable is said to have function scope, which is one 
type of local scope.

a variable declared 
within a function is 
in the local scope of 
that function

a local variable is 
not accessible 
outside of its local 
scope



let temp = 75; 
if (temp > 70) { 
  let forecast = ‘It’s gonna be warm!’; 
  console.log(temp + “! ” + forecast); // 75! It’s gonna be warm! 
} 
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

SCOPE & OBJECTS

BLOCK SCOPE
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‣ A variable created with let or const creates local scope within any 
block, including blocks that are part of loops and conditionals. 

‣ This is known as block scope, which is another type of local scope.
let creates a local variable within 
any block, such as an if statement

a variable with block 
scope is not accessible 
outside of its block



function getTemp() { 
  let temp = 75; 
  let tempAccess = function() { 
    console.log(temp); 
  } 
  return tempAccess; 
}
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CLOSURES
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‣ A closure is an inner function that has access to the outer (enclosing) 
function’s variables. 

the tempAccess() 
function is a 
closure

outer function 
getTemp() returns 
a reference to the 
inner function 
tempAccess()
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1. nested functions 
2. scope 

inner function has access to outer function’s 
variables 

3. return statement 

outer function returns reference to inner function



LET'S TAKE A CLOSER LOOK
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‣Closures have access to the outer function’s variables 
(including parameters) even after the outer function 
returns. 

‣Closures store references to the outer function’s 
variables, not the actual values.



LET'S TAKE A CLOSER LOOK
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WHAT ARE CLOSURES USED FOR?
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‣Turning an outer variable into a private variable 
‣Namespacing private functions



LAB — CLOSURES

‣ Understand and explain closures
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

15 min
EXECUTION

‣ starter-code > 1-closures-lab
LOCATION

1. Follow the instructions in app.js to build and test code that uses 
a closure.



Immediately-invoked 
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Immediately-invoked function expression (IIFE)

‣ A function expression that is executed as soon as it is declared 
‣ Pronounced “iffy”
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IIFE based on a function expression

let countDown = function() { 
  let counter; 
  for(counter = 3; counter > 0; counter--) { 
    console.log(counter); 
  } 
}();

‣ Make a function expression into an IIFE by adding () to the end (before 
the semicolon)
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IIFE based on a function expression

let countDown = function() { 
  let counter; 
  for(counter = 3; counter > 0; counter--) { 
    console.log(counter); 
  } 
}();

‣ Make a function expression into an IIFE by adding () to the end (before 
the semicolon)
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IIFE based on a function declaration

(function countDown() { 
  let counter; 
  for(counter = 3; counter > 0; counter--) { 
    console.log(counter); 
  } 
})();

‣ Make a function declaration into an IIFE by adding  
( at the start and  
)(); to the end
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IIFE based on a function declaration

(function countDown() { 
  let counter; 
  for(counter = 3; counter > 0; counter--) { 
    console.log(counter); 
  } 
})();

‣ Make a function declaration into an IIFE by adding  
( at the start and  
)(); to the end



LET'S TAKE A CLOSER LOOK
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‣Using an IIFE to return an object literal 
‣The methods of the returned object can access the 
private properties and methods of the IIFE (closures!), 
but other code cannot do this 
‣This means specific parts of the IIFE are not available 
in the global scope



let counter = function() { 
    let count = 0; 

}();

CLOSURES & THIS

BUILDING A MODULE
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from an IIFE

containing closures
returning an 
object literal

return { 
    reset: function() { 
        count = 0; 
    }, 
    get: function() { 
        return count; 
    }, 
    increment: function() { 
        count++; 
    } 
};
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BENEFITS OF THE MODULE PATTERN
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‣Keeps some functions and variables private 
‣Avoids polluting the global scope 
‣Organizes code into objects



LET'S TAKE A CLOSER LOOK



10 min 1. In app.js, complete the module so it exports methods for 
the behaviors described in the comment at the top of the 
file. 

2.  When your code is complete and works properly, the 
statements at the bottom of the file should all return the 
expected values in the console. 

3. BONUS: Add a "tradeIn" method that lets you change the 
make of the car and refuels it. Be sure the getMake 
method still works after doing a tradeIn.

EXERCISE

TIMING

EXERCISE — CREATE A MODULE

‣ Pair
TYPE OF EXERCISE

‣ start files > 4-modules-exercise
LOCATION
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•At runtime 
•Based on how the function is called
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CONTEXT RULES
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situation what this maps to

method invocation the object that owns the method

constructor function the newly created object

event handler the element that the event was fired from

function invocation the global object (window)

function invocation 
(strict mode) undefined

arrow function the context of the caller



LET'S TAKE A CLOSER LOOK



5 min 1. In app.js, read through the code without running it. 
2. Predict the results of the two console.log statements. 
3. Run the code and check the results against your 

predictions. If the results were different, identify why.

EXERCISE

TIMING

EXERCISE — PREDICT CONTEXT

‣ Pairs
TYPE OF EXERCISE

‣ start files > 8-this-exercise
LOCATION



EXERCISE

TIMING

EXERCISE - CLOSURES LAB

LOCATION
‣ starter-code > 9-closures-lab

until 9:20 1. In your editor, open app.js and read the instructions. 
2. Create the createTaxCalculator function described in the 

instructions. 
3. Create 2 variables that call the function you created with 

different argument values. 
4. Check the console output and verify that you get the 

expected results.
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Exit Tickets!
(Class #14)
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LEARNING OBJECTIVES - REVIEW
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‣ Understand and explain closures. 
‣ Instantly invoke functions. 
‣ Implement the module pattern in your code. 
‣ Understand and explain Javascript context.
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NEXT CLASS PREVIEW
In-class lab: Intro to CRUD and Firebase
‣ Explain what CRUD is. (Preview: Create, Read, Update, Delete) 
‣ Explain the HTTP methods associated with CRUD. 
‣ Implement Firebase in an application. 
‣ Build a full-stack app.



Q&A
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