JAVASCRIPT
DEVELOPMENT

SCOPE & OBJECTS

HELLO!

1. Pull changes from the vodnik/JS-SF-14-resources repo to
your computer:

» Open the terminal
» cd to the ~/Documents/JSD/JS-SF-14-resources directory
» Type git pull and press return

2. In your code editor, open the following folder:
Documents/JSD/JS-SF-14-resources/04-scope-objects

SCOPE & OBJECTS

SCOPE & OBJECTS b

LEARNING OBJECTIVES

At the end of this class, you will be able to

» Determine the scope of local and global variables

» Describe what hoisting does

» Identify likely objects, properties, and methods in real-world scenarios
» Create JavaScript objects using object literal notation

SCOPE & OBJECTS

AGENDA

» Variable scope

» The var, 1let, and const keywords
» Hoisting

» Objects

SCOPE & OBJECTS

WEEKLY OVERVIEW

WEEK 3 Conditionals & Functions / Scope & objects

WEEK 4 Slack Bot Lab / Scope & objects

WEEK 5 Intro to DOM & jQuery / Events & jQuery

SCOPE & OBJECTS

EXIT TICKET QUESTIONS

1. are there any guidelines for choosing which loop works
2. maybe a bit more on the falsey topics

SCOPE & OBJECTS

Why do we use different networks to connect to the

Internet when we’re in different places?

»home

»GA

»iN @ car

»on BART/MUNI

ATTEQD
ATT712

ATTS76

Home
-H0OME-5F32
Workbench

xfintywir

Alrplane Maoge

'''''''

2a2rsonsl Hotspot

SCOPE & OBJECTS

SCOPE

SCOPE & OBJECTS

10

GLOBAL SCOPE

» A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

global variable

let te$b = 75;
function predict() {
console.log(temp); // 75

}
console.log(temp); // 75

SCOPE & OBJECTS 11

FUNCTION SCOPE

» A variable declared within a function is not accessible outside of that
function. Such a variable is said to have function scope, which is one
type of local scope.

a variable declared

within a function is

in the local scope of
that function

let temp = 75;

a local variable is
not accessible
outside of its local
scope

og(temp + an + forecast);

// ‘forecast’ is undefined

SCOPE & OBJECTS 12

BLOCK SCOPE

» A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

» This is known as block scope, which is another type of local scope.

let creates a local variable within

any block, such as an if statement

a variable with block
let temp = 75; scope 1s not accessible
outside of its block

console.log(temp + “! " + forecast); // ‘forecast’ is undefined «

LET'S TAKE A CLOSER LOOK

EXERCISE — SCOPE

KEY OBJECTIVE
» Determine the scope of local and global variables

TYPE OF EXERCISE
» Turn and Talk

EXECUTION

3 min 1. Describe the difference between global scope, local
scope, function scope, and block scope.

2. Collaborate to write code that includes at least
* one variable with global scope
e one variable with function scope
e one variable with block scope.

LAB — SCOPE

KEY OBJECTIVE
» Determine the scope of local and global variables

TYPE OF EXERCISE
» Pairs

LOCATION
» starter code > 1l-scope-1lab

EXECUTION

3 min 1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > main.js to complete parts A
and B.

let, const, var,
AND SCOPE

SCOPE & OBJECTS

17

let

» let

» newer keyword (ES6)

» local scope within functions and within any block (including loops
and conditionals)

let results = [0,5,2];

SCOPE & OBJECTS

18

const

» const

» newer keyword (ES6)

» local scope within functions and within any block (including loops
and conditionals)

» used to declare constants

»> immutable: once you’ve declared a value using const, you can’t
change the value in that scope

» by contrast, variables declared with var or let are mutable,
meaning their values can be changed

const salesTax = 0.0875;

LET'S TAKE A CLOSER LOOK

SCOPE & OBJECTS

20

var

» original JS keyword for creating variables
» only type of local scope it can create is function scope

var results = [0,5,2];

SCOPE & OBJECTS

let/const vs var

» 1et & const create local scope within any block
(including loops and conditionals) but var does not

let x = 1; var x = 1;
if (true) { var does not if (true) {
let x = 2; create local L, var x = 2;
console.log(x); // 2 scope within console.log(x); // 2
) a block 1

console.log(x); // 1 console.log(x); // 2

SCOPE & OBJECTS

22

let, const, var, AND BROWSER SUPPORT

» let and const are not supported by older browsers
» See caniuse.com, search on let

» babel.js (babeljs.io) allows you to transpile newer code into code that
works with older browsers as well

» we will rely on 1let and const in class

http://caniuse.com
http://babeljs.io

SCOPE & OBJECTS

23

let, const, AND var

which browsers
support it?

(modern or all)

here does it can you change
keyword w o [the value in the
- create local scope current scope?
within any block _yes
within any block o

within a function
block only

var yes

only modern
browsers

only modern
browsers

all browsers

LET'S TAKE A CLOSER LOOK

LAB — LET, VAR, AND CONST

KEY OBJECTIVE
» Determine the scope of local and global variables

TYPE OF EXERCISE
» Pairs

LOCATION
» starter code > 2-let-var-const-1lab

EXECUTION

3 min 1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > app.js to complete parts A
and B.

SCOPE & OBJECTS

26

HOISTING

SCOPE & OBJECTS 27

HOISTING

Variable names declared with var are hoisted, but not their values.

Code as written by developer Code as interpreted by parser

function foo() { function foo() {

var Xx;
cc |)J . J

console.log(“Hello!”); console.log(“Hello!”);
var x = 1; x = 1°
- J

J }

SCOPE & OBJECTS

HOISTING

28

Variables declared with let or const are not hoisted.

Code as written by developer

function foo() {
console.log(“Hello!”);
let x = 1;

}

Code as interpreted by parser

function foo() {
console.log(“Hello!”);
let x = 1;

}

SCOPE & OBJECTS 29

HOISTING

Function declarations are hoisted.
Your code can call a hoisted function before it has been declared

Code as written by developer Code as interpreted by parser
—
foo(); function foo() {
console.log(“Hello!”);
function foo() { }

console.log(“Hello!”);
} foo();

SCOPE & OBJECTS 30

HOISTING

Function expressions are treated like other variables

Code as written by developer Code as interpreted by parser
—
foo(); var foo;
var foo = function() { foo(); // error: foo is
console.log(“Hello!”); // not a function
}

foo = function() {
console.log(“Hello!”);

¥

SCOPE & OBJECTS 31

HOISTING

Function expressions are treated like other variables

Code as written by developer Code as interpreted by parser

foo(); foo(); // error: foo is

// not defined
let foo = function() {

console.log(“Hello!”); let foo = function() {
} console.log(“Hello!”);

¥

SCOPE & OBJECTS

32

VARIABLES AND HOISTING

what is hoisted?
o

name only

SCOPE & OBJECTS

33

FUNCTIONS AND HOISTING

type what is hoisted?

declaration name and content

expression using

let/const nothing

S T LR E e | name only

LET'S TAKE A CLOSER LOOK

EXERCISE — HOISTING

KEY OBJECTIVE
» Create a program that hoists variables

TYPE OF EXERCISE
» Groups of 3

EXECUTION
2 min 1. Examine the code on the screen.

2. Discuss with your group which parts of the code are
hoisted.

3. Predict the result of each of the first four statements.

OBJECTS

EXERCISE — OBJECTS

KEY OBJECTIVE
» Create JavaScript objects using object literal notation

TYPE OF EXERCISE
» Groups of 2-3

TIMING

3 min 1. For the thing you’ve been assigned, make a list of
attributes (descriptions) and actions (things it can do).

SCOPE & OBJECTS

38

OBJECTS ARE A SEPARATE DATA TYPE

STRING NUMBER ARRAY BOOLEAN

0BJECT

SCOPE & OBJECTS

AN OBJECT IS A COLLECTION OF PROPERTIES

let favorites = {

' 4-

}

39

SCOPE & OBJECTS

PROPERTY = KEY & VALUE

» A property is an association between a key and a value
» Key: name (often descriptive) used to reference the data
» value: the data stored in that property

let favorites = {

}

40

SCOPE & OBJECTS 41

KEY-VALUE PAIR

» A property is sometimes referred to as a key-value pair
let favorites = {

: >
[$

} key-value pair

SCOPE & OBJECTS

42

AN OBJECT IS NOT ORDERED

{
“apple”, fruit: “apple”,

“pear”, vegetable: “carrot?,

“banana” fungus: “trumpet mushroom”

¥

ARRAY OBJECT
ordered not ordered

SCOPE & OBJECTS

A METHOD IS A PROPERTY WHOSE VALUE IS A
FUNCTION

let favorites = {

fruit: “apple”,
method

vegetable: “carrot”,

43

SCOPE & OBJECTS

TWO WAYS T0 GET/SET PROPERTIES

square
dot notation bracket
notation

SCOPE & OBJECTS 43

GETTING A PROPERTY VALUE WITH DOT NOTATION

object object name getting properties

let favorites = {

favorites.fruit property name
> ffapple).’

fruit: “apple”,
veg: “carrot”, favorites.veg

declare: function() { > “carrot”

console.log(“I like fruit and veg”);

object name | calling a method
method name

favorites.declare

> “I like fruit and veg”

SCOPE & OBJECTS b6

SETTING A PROPERTY VALUE WITH DOT NOTATION

object setting properties

let favorites = {

fruit: “apple”,

favorites.fungus = ‘shiitake’;

veg: “carrot”, favorites.pet = ‘hamster’;

declare: function() {

console.log(“I like fruit and veg”);

setting a method

favorites.beAmbivalent = function() {

console.log(“I like other things”);

}s

SCOPE & OBJECTS 47
GETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

object object name getting properties

let favorites = { favorites[fruit]

fruit: “apple”, > “apple” property name

veg: “carrot”, favorites|[veg]

declare: function() { > “carrot”

console.log(“I like fruit and veg”);

¥

¥

SCOPE & OBJECTS 48
SETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

object setting properties

let favorites = {

favorites[fungus] = ‘shiitake’;

fruit: “apple”,

veg: “carrot”, favorites[pet] = ‘hamster’;

declare: function() {

console.log(“I like fruit and veg”);

¥

setting a method

}

favorites[beAmbivalent] = function() {

console.log(“I like other things”);

}s

LET'S TAKE A CLOSER LOOK

EXERCISE — OBJECTS

KEY OBJECTIVE

» Create JavaScript objects using object literal notation

TYPE OF EXERCISE

» Groups of 2-3 (same group as for previous exercise)

TIMING

3 min 1. On your desk or on the wall, write code to create a

variable whose name corresponds to the thing you were
assigned in the previous exercise (cloud, houseplant,
nation, office chair, or airplane).

2. Write code to add a property to the object and specify a
value for the property.

3. Write code to add a method to the object, and specify a
value for the method (use a comment or console.log(
statement for the function body).

4. BONUS: Rewrite your answers for 1-3 as a single
JavaScript statement.

ARRAY ITERATOR
METHODS

SCOPE & OBJECTS

92

ARRAY ITERATOR METHODS

forEach()

every ()

some ()

filter()

map ()

Executes a provided function once per array element

Tests whether all elements in the array pass the test
implemented by the provided function

Tests whether some element in the array passes the
text implemented by the provided function

Creates a new array with all elements that pass the test
implemented by the provided function

Creates a new array with the results of calling a
provided function on every element in this array

SCOPE & OBJECTS

93

forEach()

array name

'

method name

v

function to execute for
each array element

v
function

parameter serves as a
variable referencing the
current array element

v

SCOPE & OBJECTS

forEach () EXAMPLE

let teams ['Bruins', 'Bears', 'Ravens’,

teams.forEach(function(element) {
console.log(element);

})s

'‘Ducks'];

94

REAL WORLD
SCENARIOS

SCOPE & OBJECTS 26

REAL WORLD SCENARIO

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

SCOPE & OBJECTS 97

OBJECTS = NOUNS

A luser, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

implicit object:

shopping cart

SCOPE & OBJECTS a8

PROPERTIES = ADJECTIVES

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

implicit properties: for each pair of shoes: for the shopping cart:
price contents
color total
shipping

tax

SCOPE & OBJECTS 99

METHODS = VERBS

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

implicit methods: for each pair of shoes: for the shopping cart:

calculate shipping
calculate tax

add to cart

complete purchase
remove item

EXERCISE — REAL WORLD SCENARIOS & OBJECTS

KEY OBJECTIVE

» Identify likely objects, properties, and methods in real-world
scenarios

TYPE OF EXERCISE
» Groups of 3-4

TIMING
10 min 1. Read through your scenario together.

2. Identify and write down likely objects, properties, and
methods in your scenario. (Remember to consider
implicit objects as well as explicit ones.)

3. Choose someone to report your results to the class.

LAB — OBJECTS

KEY OBJECTIVE
» Create JavaScript objects using object literal notation

TYPE OF EXERCISE
» Individual or pair

TIMING

20 min 1. Open starter-code > 4-object-exercise >
monkey . js in your editor.

2. Create objects for 3 different monkeys each with the
properties and methods listed in the start file.

3. Practice retrieving properties and using methods with
both dot notation and bracket syntax.

4. BONUS: Rewrite your code to use a constructor function.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#Using_a_constructor_function

SCOPE & OBJECTS

62

Exit Tickets!

(Class #4)

SCOPE & OBJECTS 63

LEARNING OBJECTIVES - REVIEW

» Determine the scope of local and global variables

» Describe what hoisting does

» Identify likely objects, properties, and methods in real-world scenarios
» Create JavaScript objects using object literal notation

SCOPE & OBJECTS b4

NEXT CLASS PREVIEW
Slack Bot Lab

» Install and configure all utilities needed to build a bot using the Hubot
framework

» Write scripts that allow your bot to interact with users of the class
Slack organization

SCOPE & OBJECTS

65

0&A

