
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

AJAX & APIS

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-13-resources repo
to your computer

2. Open the 09-ajax-apis/starter-code folder in your code
editor

JAVASCRIPT DEVELOPMENT

AJAX & APIS

AJAX & APIS

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to
‣ Access public APIs and get information back.
‣ Implement an Ajax request with vanilla JS.
‣ Create an Ajax request using jQuery.
‣ Describe what asynchronous means in relation to JavaScript
‣ Pass functions as arguments to functions that expect them.
‣ Write functions that take other functions as arguments.
‣ Build asynchronous program flow using promises and Fetch

AJAX & APIS

AGENDA
 5

‣ Ajax using Fetch
‣ Ajax & jQuery
‣ Separation of concerns
‣ Asynchronous code
‣ Functions as callbacks
‣ Promises & Fetch

WEEKLY OVERVIEW
AJAX & APIS

WEEK 7 (holiday) / Advanced APIs

WEEK 6 Ajax & APIs / Asynchronous JS & callbacks

WEEK 8 Project 2 lab / Prototypal inheritance

Break

AJAX & APIS

EXIT TICKET QUESTIONS
 7

1. Is DOM manipulation something we do when we're learning how to
code or is it something that programmers do to debug their code or is
it something you actually deploy to production?

2. Does a site need to have an API to be able to retrieve data?

AJAX & APIS

HOMEWORK REVIEW

4 min 1. Share your solutions for the homework.
2. Share one thing you found challenging. If you worked it

out, share how; if not, brainstorm with your group how
you might approach it.

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Pairs
TYPE OF EXERCISE

5 min 1. Describe the term on one of your slips of paper without
saying the term itself until your partner guesses the
term.

2. Take turns so everyone gets a chance to give clues.

EXERCISE

TIMING

EXERCISE — CATCH PHRASE

‣ Pairs
TYPE OF EXERCISE

AJAX & APIS

EXERCISE

ACTIVITY

‣ Individual/Partner
TYPE OF EXERCISE

3 min
TIMING

1. Think about how you could use one or more sources of
web data in an app.

2. Write a description or sketch a schematic of your app on
your desk.

Ajax
AJAX & APIS 13

AJAX & APIS 14

Ajax

A
J
A
X

synchronous

avaScript

nd

ML or JSON!

Ajax in vanilla JS
AJAX & APIS 15

AJAX & APIS 16

Fetch = Ajax requests in vanilla JavaScript

fetch(url).then(function(response) {
 // check if request was successful
}).then(function(data) {
 // do something with the data
});

LET'S TAKE A CLOSER LOOK

EXERCISE

TIMING

EXERCISE - CREATING AN AJAX REQUEST

LOCATION
‣ starter-code > 1-fetch-ajax-exercise

5 min 1. Copy the code from the codealong to the main.js file.
2. Change the URL to the one shown in the instructions.
3. Verify that a new set of results is shown in the console.
4. BONUS: Customize the error message to display the text

of the HTTP status message.  
(Hint: look at https://developer.mozilla.org/en-US/docs/
Web/API/Response/statusText)

5. BONUS: Refactor the code to work with user interaction.
In the index.html file there is a "Get Health Data" button.
Modify your code so data is only requested and logged to
the console after a user clicks the button.

https://developer.mozilla.org/en-US/docs/Web/API/Response/statusText
https://developer.mozilla.org/en-US/docs/Web/API/Response/statusText
https://developer.mozilla.org/en-US/docs/Web/API/Response/statusText

jQuery Ajax
AJAX & APIS 19

AJAX & APIS 20

Using Ajax with jQuery

method description

$.get() loads data from a server using an HTTP GET request

$.ajax() performs an Ajax request based on parameters you specify

LET'S TAKE A CLOSER LOOK

Code organization
AJAX & APIS 22

AJAX & APIS 23

SEPARATION OF CONCERNS
code for data

code for view

code for data
and view

intermingled

parts of code
call each
other, but are
maintained
separately

AJAX & APIS 24

SEPARATION OF CONCERNS - HTTP
code for client

code for HTTP

code for client
and for HTTP

requests
intermingled

parts of code
call each
other, but are
maintained
separately

LET'S TAKE A CLOSER LOOK

AJAX & APIS 26

CREATING DRY CODE FOR HTTP REQUESTS

Code for HTTP request

Code to get data from
source #1 and add to view

Code to get data from
source #2 and add to view

Source #1

Source #2

Your app Web services

Code for HTTP
request is separate
from code for data
parsing and DOM
manipulation

LAB — JQUERY AJAX

45 min
EXECUTION

LOCATION

1. Open index.html in your editor and familiarize yourself with the
structure and contents of the file.

2. Open main.js in your editor and follow the instructions.

‣ starter-code > 4-ajax-lab

‣ Create an Ajax request using jQuery.
OBJECTIVE

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 28

What does this code do?

Asynchronous
programming

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 29

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 30

WHAT WOULD YOU SEE IN THE CONSOLE?
let status;
function doSomething() {
 for (let i = 0; i < 1000000000; i++) {
 numberArray.push(i);
 }
 status = “done”;
 console.log(“First function done”);
}
function doAnotherThing() {
 console.log(“Second function done”);
}
function doSomethingElse() {
 console.log(“Third function: ” +
status);
}

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 31

WHAT WOULD YOU SEE IN THE CONSOLE?
doSomething();
doAnotherThing();
doSomethingElse();

// result in console
// (after a few seconds):
> “First function done”
> “Second function done”
> “Third function: done”

let status;
function doSomething() {
 for (let i = 0; i < 1000000000; i++) {
 numberArray.push(i);
 }
 status = “done”;
 console.log(“First function done”);
}
function doAnotherThing() {
 console.log(“Second function done”);
}
function doSomethingElse() {
 console.log(“Third function: ” +
status);
}

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 32

SYNCHRONOUS CODE

‣ What we’ve been writing so far
‣ Statements are executed in order, one after another
‣ Code blocks program flow to wait for results

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 33

ASYNCHRONOUS CODE

‣ Code execution is independent of the main program flow
‣ Statements are executed concurrently
‣ Program does not block program flow to wait for results

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 34

ASYNCHRONOUS PROGRAM FLOW
$(‘button’).on(‘click’, doSomething);

$.get(url, function(data) {
 doAnotherThing(data);
});

fetch(url).then(function(response) {
 if (response.ok) {
 return response.json();
 } else {
 console.log('There was a problem.');
 }
}).then(doSomethingElse(data));

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 35

APPROACHES TO ASYNCHRONOUS PROGRAM FLOW

CALLBACKS PROMISES

Functions & callbacks
ASYNCHRONOUS JAVASCRIPT & CALLBACKS 36

HOW MANY ARGUMENTS IN THIS CODE?

$button.on('click', function() {
 // your code here
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 38

APPROACHES TO ASYNCHRONOUS PROGRAM FLOW

CALLBACKS PROMISES

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 39

FUNCTIONS ARE FIRST-CLASS OBJECTS

‣ Functions can be used in any part of the code that strings, arrays, or
data of any other type can be used

➡store functions as variables
➡pass functions as arguments to other functions
➡return functions from other functions
➡run functions without otherwise assigning them

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 40

HIGHER-ORDER FUNCTION

‣ A function that takes another function as an argument, or that returns
a function

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 41

HIGHER-ORDER FUNCTION — EXAMPLE

setTimeout(function, delay);

setTimeout()

where
•function is a function (reference or anonymous)
•delay is a time in milliseconds to wait before the first argument is called

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 42

SETTIMEOUT WITH ANONYMOUS FUNCTION ARGUMENT

setTimeout(function(){
 console.log("Hello world");
}, 1000);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 43

SETTIMEOUT WITH NAMED FUNCTION ARGUMENT

function helloWorld() {
 console.log("Hello world");
}

setTimeout(helloWorld, 1000);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 44

CALLBACK

‣ A function that is passed to another function as an argument, and that
is then called from within the other function

‣ A callback function can be anonymous (as with setTimeout() or
forEach()) or it can be a reference to a function defined elsewhere

LET'S TAKE A CLOSER LOOK

EXERCISE

TIMING

EXERCISE - CREATING A CALLBACK FUNCTION, PART 1

LOCATION
‣ starter-code > 1-callback-exercise

10 min 1. In your editor, open script.js.
2. Follow the instructions in Part 1 to create the add,

process, and subtract functions, and to call the process
function using the add and subtraction functions as
callbacks.

3. Test your work in the browser and verify that you get the
expected results.

4. BONUS: Comment out your work and recreate using
arrow functions (see https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Functions/
Arrow_functions)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

EXERCISE

TIMING

EXERCISE - CREATING A CALLBACK FUNCTION, PART 2

LOCATION
‣ starter-code > 1-callback-exercise

10 min 1. In your editor, return to script.js.
2. Follow the instructions in Part 2 to allow the process

function to accept values as additional parameters, and to
pass those values when calling the callback function.

3. Test your work in the browser and verify that you get the
expected results.

4. BONUS: Make the same changes to your code that uses
arrow functions.

Promises & Fetch
ASYNCHRONOUS JAVASCRIPT & CALLBACKS 48

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 49

APPROACHES TO ASYNCHRONOUS PROGRAM FLOW

CALLBACKS PROMISES

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 50

PROMISES

doSomething(successCallback, failureCallback);

doSomething().then(
 // work with result
).catch(
 // handle error
);

traditional callback:

callback using a promise:

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 51

MULTIPLE CALLBACKS — TRADITIONAL CODE

doSomething(function(result) {
 doSomethingElse(result, function(newResult) {
 doThirdThing(newResult, function(finalResult) {
 console.log('Got the final result: ' + finalResult);
 }, failureCallback);
 }, failureCallback);
}, failureCallback);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 52

MULTIPLE CALLBACKS WITH PROMISES
doSomething().then(function(result) {
 return doSomethingElse(result);
})
.then(function(newResult) {
 return doThirdThing(newResult);
})
.then(function(finalResult) {
 console.log('Got the final result: ' + finalResult);
})
.catch(function(error) {
 console.log(‘There was an error');
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 53

ERROR HANDLING WITH PROMISES
doSomething().then(function(result) {
 return doSomethingElse(result);
})
.then(function(newResult) {
 return doThirdThing(newResult);
})
.then(function(finalResult) {
 console.log('Got the final result: ' + finalResult);
})
.catch(function(error) {
 console.log(‘There was an error');
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 54

PROMISES

function
1

on completion,
generates

promise
(object)

promise
passed

to .then() function
2

function 1
success

function 1
failure

promise
passed

to .catch()

on completion,
generates

promise
(object)

function 2
success

function 2
failure

promise
passed

to .catch()

error
handling
function

promise
passed

to .then()

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 55

FETCH
fetch(url).then(function(response) {
 if(response.ok) {
 return response.json();
 } else {
 throw 'Network response was not ok.’;
 }
}).then(function(data) {
 // DOM manipulation
}).catch(function(error) {
 // handle lack of data in UI
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 56

fetch(url).then(function(res) {
 if(res.ok) {
 return res.json();
 } else {
 throw ‘problem';
 }
}).then(function(data) {
 // DOM manipulation

}).catch(function(error) {
 // handle lack of data in UI
});

$.get(url).done(function(data) {
 // DOM manipulation
})

.fail(function(error) {
 // handle lack of data in UI
});

Fetch jQuery .get()

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 57

ERROR HANDLING FOR INITIAL FETCH REQUEST
fetch(url).then(function(response) {
 if(response.ok) {
 return response.json();
 }
 throw 'Network response was not ok.';
}).then(function(data) {
 // DOM manipulation
}).catch(function(error) {
 // handle lack of data in UI
});

LET'S TAKE A CLOSER LOOK

EXERCISE

TIMING

EXERCISE - FETCH

LOCATION
‣ starter-code > 3-async-exercise

until 9:20 1. In your editor, open script.js.
2. Follow the instructions to add a Fetch request for

weather data that uses the results of the existing zip code
lookup.

AJAX & APIS 60

Exit Tickets!
(Class #9)

AJAX & APIS

LEARNING OBJECTIVES - REVIEW
 61

‣ Access public APIs and get information back.
‣ Implement an Ajax request with vanilla JS.
‣ Create an Ajax request using jQuery.
‣ Describe what asynchronous means in relation to JavaScript
‣ Pass functions as arguments to functions that expect them.
‣ Write functions that take other functions as arguments.
‣ Build asynchronous program flow using promises and Fetch

AJAX & APIS 62

NEXT CLASS PREVIEW
Asynchronous JavaScript and Callbacks
‣ Pass functions as arguments to functions that expect them.
‣ Write functions that take other functions as arguments.
‣ Return functions from functions.

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 63

NEXT CLASS PREVIEW
Advanced APIs
‣ Generate API specific events and request data from a web service.
‣ Process a third-party API response.
‣ Make a request and ask another program or script to do something.
‣ Search documentation needed to make and customize third-party API

requests.

Q&A
AJAX & APIS 64

