
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

SCOPE

HELLO!
 2

1. Pull changes from the vodnik/JS-SF-13-resources repo to
your computer:
‣ Open the terminal
‣ cd to the ~/Documents/JSD/JS-SF-13-resources directory
‣ Type git pull and press return

2. In your code editor, open the following folder:  
Documents/JSD/JS-SF-13-resources/04-scope-objects

JAVASCRIPT DEVELOPMENT

SCOPE

SCOPE

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables

SCOPE

AGENDA
 5

‣ Variable scope
‣ The var, let, and const keywords
‣ Hoisting

WEEKLY OVERVIEW
SCOPE

WEEK 4

WEEK 5

Slack Bot Lab / Objects & JSON

Intro to DOM & jQuery / Events & jQuery

WEEK 3 Conditionals & Functions / Scope & hoisting

SCOPE

EXIT TICKET QUESTIONS
 7

1. Suggestion: more exercises in class

SCOPE 8

Why do we use different networks to connect to the
Internet when we’re in different places?
‣home
‣GA
‣in a car
‣on BART/MUNI

SCOPE
SCOPE 9

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

SCOPE

GLOBAL SCOPE
 10

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

global variable

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

SCOPE

FUNCTION SCOPE
 11

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have function scope, which is one
type of local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

SCOPE

BLOCK SCOPE
 12

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope, which is another type of local scope.
let creates a local variable within
any block, such as an if statement

a variable with block
scope is not accessible
outside of its block

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

3 min 1. Describe the difference between global scope, local
scope, function scope, and block scope.

2. Collaborate to write code that includes at least
•one variable with global scope
•one variable with function scope
•one variable with block scope.

EXECUTION

LAB — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

3 min
EXECUTION

‣ starter code > 1-scope-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > main.js to complete parts A
and B.

let, const, var,
AND SCOPE

SCOPE 16

SCOPE

let
 17

let results = [0,5,2];

‣ let
» newer keyword (ES6)
» local scope within functions and within any block (including loops

and conditionals)

SCOPE

const
 18

‣ used to declare constants
» immutable: once you’ve declared a value using const, you can’t

change the value in that scope
» by contrast, variables declared with var or let are mutable,

meaning their values can be changed

const salesTax = 0.0875;

‣ const
» newer keyword (ES6)
» local scope within functions and within any block (including loops

and conditionals)

LET'S TAKE A CLOSER LOOK

SCOPE

var
 20

var results = [0,5,2];

» original JS keyword for creating variables
» only type of local scope it can create is function scope

let x = 1;
if (true) {
 let x = 2;
 console.log(x); // 2
}
console.log(x); // 1

SCOPE

let/const vs var
 21

var x = 1;
if (true) {
 var x = 2;
 console.log(x); // 2
}
console.log(x); // 2

‣ let & const create local scope within any block
(including loops and conditionals) but var does not

var does not
create local
scope within
a block

SCOPE 22

‣ let and const are not supported by older browsers
» see caniuse.com, search on let

‣ babel.js (babeljs.io) allows you to transpile newer code into code that
works with older browsers as well

‣ we will rely on let and const in class

let, const, var, AND BROWSER SUPPORT

http://caniuse.com
http://babeljs.io

SCOPE 23

let, const, AND var
keyword where does it

create local scope?
can you change
the value in the
current scope?

which browsers
support it?
(modern or all)

let within any block yes only modern
browsers

const within any block no only modern
browsers

var within a function
block only yes all browsers

LET'S TAKE A CLOSER LOOK

LAB — LET, VAR, AND CONST

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

3 min
EXECUTION

‣ starter code > 2-let-var-const-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > app.js to complete parts A
and B.

HOISTING
SCOPE 26

SCOPE

HOISTING
 27

function foo() {
 console.log(“Hello!”);
 var x = 1;
}

Code as written by developer

function foo() {
 var x;
 console.log(“Hello!”);
 x = 1;
}

Code as interpreted by parser

var x

Variable names declared with var are hoisted, but not their values.

SCOPE

HOISTING
 28

function foo() {
 console.log(“Hello!”);
 let x = 1;
}

Code as written by developer

function foo() {
 console.log(“Hello!”);
 let x = 1;
}

Code as interpreted by parser

Variables declared with let or const are not hoisted.

SCOPE

HOISTING
 29

foo();

function foo() {
 console.log(“Hello!”);
}

Code as written by developer

function foo() {
 console.log(“Hello!”);
}

foo();

Code as interpreted by parser

Function declarations are hoisted.
Your code can call a hoisted function before it has been declared

function foo() {
 console.log(“Hello!”);
}

SCOPE

HOISTING
 30

Function expressions are treated like other variables

foo();

var foo = function() {
 console.log(“Hello!”);
}

Code as written by developer

var foo;

foo(); // error: foo is
 // not a function

foo = function() {
 console.log(“Hello!”);
}

Code as interpreted by parser

var foo

SCOPE

HOISTING
 31

Function expressions are treated like other variables

foo();

let foo = function() {
 console.log(“Hello!”);
}

Code as written by developer

foo(); // error: foo is
 // not defined

let foo = function() {
 console.log(“Hello!”);
}

Code as interpreted by parser

SCOPE 32

VARIABLES AND HOISTING

keyword what is hoisted?

let/const nothing

var name only

SCOPE 33

FUNCTIONS AND HOISTING
type what is hoisted?

declaration name and content

expression using
let/const nothing

expression using var name only

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — HOISTING

‣ Create a program that hoists variables
KEY OBJECTIVE

‣ Groups of 3
TYPE OF EXERCISE

2 min 1. Examine the code on the screen.
2. Discuss with your group which parts of the code are

hoisted.
3. Predict the result of each of the first four statements.

EXECUTION

OBJECTS
OBJECTS & JSON 36

3 min 1. For the thing you’ve been assigned, make a list of
attributes (descriptions) and actions (things it can do).

EXERCISE
TIMING

EXERCISE — OBJECTS

‣ Groups of 2-3
TYPE OF EXERCISE

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

OBJECTS & JSON 38

OBJECTS ARE A SEPARATE DATA TYPE

STRING NUMBER ARRAY BOOLEAN OBJECT

OBJECTS & JSON 39

AN OBJECT IS A COLLECTION OF PROPERTIES

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
}

properties

OBJECTS & JSON 40

PROPERTY = KEY & VALUE
‣ A property is an association between a key and a value

‣ key: name (often descriptive) used to reference the data
‣ value: the data stored in that property

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
}

valueskeys

OBJECTS & JSON 41

KEY-VALUE PAIR
‣ A property is sometimes referred to as a key-value pair

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
} key-value pair

OBJECTS & JSON 42

AN OBJECT IS NOT ORDERED
[
 “apple”,
 “pear”,
 “banana”
]

{
 fruit: “apple”,
 vegetable: “carrot”,
 fungus: “trumpet mushroom”
}

0
1
2

ARRAY
ordered

OBJECT
not ordered

OBJECTS & JSON 43

A METHOD IS A PROPERTY WHOSE VALUE IS A
FUNCTION

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”,
 declare: function() {
 console.log(“I like fruits and vegetables!”);
 },
}

method

DATA TYPES

dot notation
square
bracket
notation

TWO WAYS TO GET/SET PROPERTIES

OBJECTS & JSON 45

GETTING A PROPERTY VALUE WITH DOT NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites.fruit

> “apple”

favorites.veg

> “carrot”

object getting properties

favorites.declare()

> “I like fruit and veg”

calling a method

property name

object name

method name
object name

OBJECTS & JSON 46

SETTING A PROPERTY VALUE WITH DOT NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites.fungus = ‘shiitake’;

favorites.pet = ‘hamster’;

object setting properties

favorites.beAmbivalent = function() {

 console.log(“I like other things”);

};

setting a method

OBJECTS & JSON 47

GETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites[fruit]

> “apple”

favorites[veg]

> “carrot”

object getting properties

property name

object name

OBJECTS & JSON 48

SETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites[fungus] = ‘shiitake’;

favorites[pet] = ‘hamster’;

object setting properties

favorites[beAmbivalent] = function() {

 console.log(“I like other things”);

};

setting a method

LET'S TAKE A CLOSER LOOK

3 min 1. On your desk or on the wall, write code to create a
variable whose name corresponds to the thing you were
assigned in the previous exercise (cloud, houseplant,
nation, office chair, or airplane).

2. Write code to add a property to the object and specify a
value for the property.

3. Write code to add a method to the object, and specify a
value for the method (use a comment or console.log()
statement for the function body).

4. BONUS: Rewrite your answers for 1-3 as a single
JavaScript statement.

EXERCISE
TIMING

EXERCISE — OBJECTS

‣ Groups of 2-3 (same group as for previous exercise)
TYPE OF EXERCISE

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

ARRAY ITERATOR
METHODS

OBJECTS & JSON 51

DATA TYPES & LOOPS 52

ARRAY ITERATOR METHODS
forEach() Executes a provided function once per array element

every() Tests whether all elements in the array pass the test
implemented by the provided function

some() Tests whether some element in the array passes the
text implemented by the provided function

filter() Creates a new array with all elements that pass the test
implemented by the provided function

map() Creates a new array with the results of calling a
provided function on every element in this array

parameter serves as a
variable referencing the
current array element

DATA TYPES & LOOPS 53

method name
function to execute for
each array elementarray name

forEach()

teams.forEach(function(element) {
 console.log(element);
});

DATA TYPES & LOOPS 54

forEach() EXAMPLE

let teams = ['Bruins', 'Bears', 'Ravens', 'Ducks'];

teams.forEach(function(element) {
 console.log(element);
});

REAL WORLD
SCENARIOS

OBJECTS & JSON 55

OBJECTS & JSON 56

REAL WORLD SCENARIO
A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 57

OBJECTS = NOUNS

shopping cart
implicit object:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 58

PROPERTIES = ADJECTIVES

implicit properties:

price
color

for each pair of shoes:

contents
total
shipping
tax

for the shopping cart:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 59

METHODS = VERBS

implicit methods:

add to cart

for each pair of shoes:

calculate shipping
calculate tax
complete purchase
remove item

for the shopping cart:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

10 min 1. Read through your scenario together.
2. Identify and write down likely objects, properties, and

methods in your scenario. (Remember to consider
implicit objects as well as explicit ones.)

3. Choose someone to report your results to the class.

EXERCISE

TIMING

EXERCISE — REAL WORLD SCENARIOS & OBJECTS

‣ Identify likely objects, properties, and methods in real-world
scenarios

KEY OBJECTIVE

‣ Groups of 3-4
TYPE OF EXERCISE

20 min 1. Open starter-code > 4-object-exercise >
monkey.js in your editor.

2. Create objects for 3 different monkeys each with the
properties and methods listed in the start file.

3. Practice retrieving properties and using methods with
both dot notation and bracket syntax.

4. BONUS: Rewrite your code to use a constructor function.

LAB

TIMING

LAB — OBJECTS

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

‣ Individual or pair
TYPE OF EXERCISE

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#Using_a_constructor_function

JSON & DOM

JSON IS A DATA FORMAT BASED ON JAVASCRIPT
 62

let instructor = {
 firstName: ‘Sasha’,
 lastName: ‘Vodnik’,
 city: ‘San Francisco’,
 classes: [
 ‘JSD’, ‘FEWD’
],
 classroom: 7,
 launched: true,
 dates: {
 start: 20180205,
 end: 20180406
 },
};

{
 “firstName”: “Sasha”,
 “lastName”: “Vodnik”,
 “city”: “San Francisco”,
 “classes”: [
 “JSD”, “FEWD”
],
 “classroom”: 7,
 “launched”: true,
 “dates”: {
 “start”: 20180205,
 “end”: 20180406
 }
}

object JSON

JSON & DOM

JSON
 63

‣ Easy for humans to read and write
‣ Easy for programs to parse and

generate

{
 “firstName”: “Sasha”,
 “lastName”: “Vodnik”,
 “city”: “San Francisco”,
 “classes”: [
 “JSD”, “FEWD”
],
 “classroom”: 7,
 “launched”: true,
 “dates”: {
 “start”: 20180205,
 “end”: 20180406
 }
}

JSON & DOM

JSON IS NOT JAVASCRIPT-SPECIFIC
 64

‣ Used across the web by programs written in many languages

JSON & DOM

JSON RULES
 65

‣ Property names must be double-quoted strings.
‣ Trailing commas are forbidden.
‣ Leading zeroes are prohibited.
‣ In numbers, a decimal point must be followed by at least one digit.
‣ Most characters are allowed in strings; however, certain characters

(such as ', ", \, and newline/tab) must be 'escaped' with a preceding
backslash (\) in order to be read as characters (as opposed to JSON
control code).

‣ All strings must be double-quoted.
‣ No comments!

JSON & DOM

TO CONVERT AN OBJECT TO JSON
 66

JSON.stringify(object);

JSON & DOM

TO CONVERT JSON TO AN OBJECT
 67

JSON.parse(json);

LET'S TAKE A LOOK

3 min 1. Write JSON code that contains an error.
2. Write your code on the wall.
3. When everyone’s code is done, we will look at the code

together as a class and practice identifying errors.

EXERCISE

TIMING

EXERCISE — JSON

‣ Implement and interface with JSON data
KEY OBJECTIVE

‣ Groups of 2-3
TYPE OF EXERCISE

JSON & DOM

YAY, I GOT SOME DATA!

 70

let person = '{"firstName":
"Sasha","lastName": "Vodnik","city":
"San Francisco","classes": ["JSD",
"FEWD"],"classroom": 7,”launched":
true,"dates": {"start": 20180205,"end":
20180406}}’;

WAIT, WHAT?!

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 71

1. PARSE THE JSON TO A JAVASCRIPT OBJECT (OR ARRAY!)

2. VIEW THE RESULTING DATA STRUCTURE

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

3. LOCATE THE DATA YOU WANT TO REFERENCE

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 72

1. PARSE THE JSON TO A JAVASCRIPT OBJECT (OR ARRAY!)

let person = '{"firstName":
"Sasha","lastName": "Vodnik","city":
"San Francisco","classes": ["JSD",
"FEWD"],"classroom": 7,”launched":
true,"dates": {"start": 20180205,"end":
20180406}}’;

let personObject = JSON.parse(person);

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 73

2. VIEW THE RESULTING DATA STRUCTURE

let personObject = JSON.parse(person);
console.log(personObject);
>

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 74

3. LOCATE THE DATA YOU WANT TO REFERENCE

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 75

console.log(personObject.city);
> “San Francisco”

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

direct property:

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 76

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

console.log(personObject.classes);
> [“JSD”,”FEWD”]

console.log(personObject.classes[0]);
> “JSD”

direct property > array element

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 77

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

console.log(personObject.dates);
> {end:20171113,start:20170906}

console.log(personObject.dates.start);
> 20170906

direct property > nested object property

LET'S TAKE A LOOK

10 min 1. Open starter-code > 2-json-exercise > app.js in
your editor.

2. Follow the instructions to write code that produces the
stated output.

LAB

TIMING

LAB — JSON

‣ Implement and interface with JSON data
KEY OBJECTIVE

‣ Individual or pair
TYPE OF EXERCISE

SCOPE 80

Exit Tickets!
(Class #4)

SCOPE

LEARNING OBJECTIVES - REVIEW
 81

‣ Determine the scope of local and global variables
‣ Create a program that hoists variables

SCOPE 82

NEXT CLASS PREVIEW
Slack Bot Lab
‣ Install and configure all utilities needed to build a bot using the Hubot

framework
‣ Write scripts that allow your bot to interact with users of the class

Slack organization

Q&A
SCOPE 83

