
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CONDITIONALS & FUNCTIONS

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-13-resources repo to
your computer:
‣ Open the terminal
‣ cd to the Documents/JSD/JS-SF-13-resources directory

‣ Type git pull and press return
2. In your code editor, open the following folder:  

Documents/JSD/JS-SF-13-resources/03—conditionals-
functions

JAVASCRIPT DEVELOPMENT

CONDITIONALS &
FUNCTIONS

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to
‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS

AGENDA
 5

‣ Comparison operators
‣ Logical operators
‣ Conditional statements
‣ Functions

WEEKLY OVERVIEW
CONDITIONALS & FUNCTIONS

WEEK 4

WEEK 5

Slack Bot Lab / Objects & JSON

Intro to DOM & jQuery / Events & jQuery

WEEK 3 Conditionals & Functions / Scope & hoisting

CONDITIONALS & FUNCTIONS 7

EXIT TICKET QUESTIONS
1. Still iffy on the nomenclature of things
2. Suggestion: Explain the different parts of the array iterator methods

and what each does in more detail.

CONDITIONALS & FUNCTIONS 8

ARRAY TERMINOLOGY

['Curly','Larry','Moe']

CONDITIONALS & FUNCTIONS 9

ARRAY TERMINOLOGY

['Curly','Larry','Moe']
0

1 2

index values

element values

for (let i = 0; i < teams.length; i++) {
 console.log(teams[i]);
}

for STATEMENT
condition (execute
statements as long as
this statement is true)

iterator declaration

change to iterator at the
end of each loop
(increment or decrement)

CONDITIONALS & FUNCTIONS 10

CONDITIONALS & FUNCTIONS

HOMEWORK REVIEW

5 min 1. Take turns showing and explaining your code.
2. Share 1 thing you’re excited about being able to

accomplish.
3. Have each person in the group note 1 thing they found

challenging for the homework. Discuss as a group how
you think you could solve each problem.

4. Did you work on the Madlibs bonus exercise? Show your
group what you did!

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Pairs
TYPE OF EXERCISE

USING THE JS-SF-13-HOMEWORK REPO 13

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

SUBMIT HOMEWORK: SETUP (ONE TIME ONLY)
 14

On github.com:

‣ Open https://git.generalassemb.ly/vodnik/JS-SF-13-homework
‣ Fork this repo to your GitHub account
‣ Clone your fork to your computer, within your JSD folder

https://git.generalassemb.ly/vodnik/JS-SF-13-homework

USING THE JS-SF-13-HOMEWORK REPO 15

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-13-HOMEWORK REPO 16

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

HOMEWORK FOLDER LOCATION
 17

JSD

JS-SF-13-homework

JS-SF-13-resources

username.git.generalassemb.ly

new folder for
your clone of the
homework repo

SCOPE & OBJECTS

SUBMIT HOMEWORK: SETUP (CONTINUED)
 18

‣ Within your new JS-SF-13-homework folder, create a new subfolder
and name it your first name, a hyphen, and your github name. For
instance, Sasha’s folder would be Sasha-vodnik.

SCOPE & OBJECTS

PERSONAL ASSIGNMENTS FOLDER LOCATION
 19

JSD

JS-SF-13-homework

JS-SF-13-resources

username.git.generalassemb.ly

new folder for
your completed
assignments

firstname-username

SCOPE & OBJECTS

SETUP DONE!
 20

‣ Reminder: Now that you’ve completed the preceding setup, you
never have to do it again!

‣ Each time you submit homework for the rest of this course, you’ll
repeat only the steps that follow.

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 1
 21

In Finder:

‣ navigate to firstname-username folder (example: Sasha-vodnik)
‣ copy your completed Homework-1 folder from last Thursday into

your firstname-username folder.

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 1 ILLUSTRATION
 22

JS-SF-13-resources JS-SF-13-homework

02-arrays-loops

start-files

Homework-1

firstname-github account

Homework-1

copy

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 2
 23

In Terminal:

‣ navigate to JS-SF-13-homework folder
‣ git add .
‣ git commit -m “submitting Homework 1”
‣ git push origin master

USING THE JS-SF-13-HOMEWORK REPO 24

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-13-HOMEWORK REPO 25

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-13-HOMEWORK REPO 26

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 3
 27

In Browser:

‣ Go to your fork of JS-SF-13-homework on git.generalassemb.ly

‣ click New pull request
‣ click Create pull request
‣ click Create pull request (again)

USING THE JS-SF-13-HOMEWORK REPO 28

vodnik/
JS-SF-13-homework

<you>/
JS-SF-13—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

CONDITIONALS & FUNCTIONS 29

How to you decide what to have for dinner?

‣ What factors do you consider?
‣ How do you decide between them?

CONDITIONALS
CONDITIONALS & FUNCTIONS 30

CONDITIONALS & FUNCTIONS 31

CONDITIONAL STATEMENTS
‣ Decide which blocks of code to execute and which to skip, based on the

results of tests that we run
‣ Known as control flow statements, because they let the program

make decisions about which statement should be executed next, rather
than just going in order

if STATEMENT
CONDITIONALS & FUNCTIONS 32

if (expression) { code } if (expression) { 
 code 
}

‣JavaScript doesn’t care about white space, so these are equivalent.
‣However, putting block contents on a separate line is best practice
for code readability.

CONDITIONALS & FUNCTIONS 33

BOOLEAN VALUES

true false

George
Boole

not
George
Boole

CONDITIONALS & FUNCTIONS 34

COMPARISON OPERATORS
> greater than

>= greater than or equal to

< less than

<= less than or equal to

=== strict equal (use this one)

== coercive equal (AVOID)

!== strict not equal (use this one)

!= coercive not equal (AVOID)

CONDITIONALS & FUNCTIONS 35

TYPE COERCION

‣ JavaScript “feature” that attempts to make it possible to run a
comparison operation on two objects of different data types

‣ Results are sometimes unpredictable
‣ == and != use coercion if necessary to arrive at an answer — avoid

them
‣ === and !== do not use coercion — best practice is to use these rather

than the coercive operators

CONDITIONALS & FUNCTIONS 36

if STATEMENT

let weather = "sunny";

if (weather === "sunny") {
 console.log("Grab your sunglasses");
}

CONDITIONALS & FUNCTIONS 37

if/else STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 38

else if STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else if (weather === "rainy") {
 console.log("Take an umbrella");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 39

TERNARY OPERATOR

‣ A compact if/else statement on a single line
‣ “ternary” means that it takes 3 operands

CONDITIONALS & FUNCTIONS 40

TERNARY OPERATOR

(expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS 41

TERNARY OPERATOR

let name = (expression) ? trueCode : falseCode;

‣ Can produce one of two values, which can be assigned to a variable in
the same statement

CONDITIONALS & FUNCTIONS 42

BLOCK STATEMENTS
‣ Statements to be executed after a control flow operation are grouped

into a block statement
‣ A block statement is placed inside braces

{
 console.log("Grab your sunglasses.");
 console.log("Enjoy the beach!");
}

CONDITIONALS & FUNCTIONS 43

LOGICAL OPERATORS
‣ Operators that let you chain conditional expressions

&& AND Returns true when both left and right values are true

|| OR Returns true when at least one of the left or right values is true

! NOT Takes a single value and returns the opposite Boolean value

CONDITIONALS & FUNCTIONS 44

TRUTHY AND FALSY VALUES

CONDITIONALS & FUNCTIONS 45

FALSY VALUES
‣ All of these values become false when converted to a Boolean:

false
0
“”
NaN
null
undefined

‣ These are known as falsy values because they are equivalent to false

CONDITIONALS & FUNCTIONS 46

TRUTHY VALUES
‣ All values other than false, 0, "", NaN, null, and undefined become
true when converted to a Boolean

‣ All values besides these six are known as truthy values because they
are equivalent to true

‣ ‘0’ and ‘false’ are both truthy! (Why?)

CONDITIONALS & FUNCTIONS 47

BEST PRACTICES
‣ Convert to an actual Boolean value

‣ Adding ! before a value returns the inverse of the value as a
Boolean

‣ Adding !! before a value gives you the original value as a Boolean
‣ Check a value rather than a comparison

instead of  
if (name === false)

just use  
if (!name)

15 min 1. Write a program that outputs results based on users’ age.
Use the list of conditions in the app.js file.

2. BONUS 1: Rewrite your code to allow a user to enter an
age value, rather than hard-coding it into your program.
(Hint: Read up on the window.prompt method.)

3. BONUS 3: Rewrite your code to use a switch statement
rather than if and else statements.

EXERCISE TIMING

LAB — CONDITIONALS

‣ Pair
TYPE OF EXERCISE

‣ starter-code > 1-ages-lab
LOCATION

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

FUNCTIONS
CONDITIONALS & FUNCTIONS 49

CONDITIONALS & FUNCTIONS

Allow us to group a
series of statements

together to perform a
specific task

GROUP STEPS

We can use the same
function multiple times

REUSABLE

Not always executed
when a page loads.

Provide us with a way to
'store' the steps needed to

achieve a task.

STORE STEPS

FUNCTIONS

CONDITIONALS & FUNCTIONS 51

DRY =
DON’T
REPEAT
YOURSELF

CONDITIONALS & FUNCTIONS 52

FUNCTION DECLARATION SYNTAX

function name(parameters) {
 // do something
}

CONDITIONALS & FUNCTIONS 53

FUNCTION DECLARATION EXAMPLE

function speak() {
 console.log(“Hello!”);
}

CONDITIONALS & FUNCTIONS 54

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
 // do something
};

CONDITIONALS & FUNCTIONS 55

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS 56

ARROW FUNCTION SYNTAX

let name = (parameters) => {
 // do something
};

CONDITIONALS & FUNCTIONS 57

ARROW FUNCTION EXAMPLE

let speak = () => {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS

pickADescriptiveName();

Function name + parentheses

function pickADescriptiveName() {
 // do something
}

To run the function, we need to call it. We can do so like this:

CALLING A FUNCTION

EXERCISE

EXERCISE — WRITING FUNCTIONS

‣ Practice defining and executing functions
KEY OBJECTIVE

‣ Individual/paired
TYPE OF EXERCISE

4 min 1. Follow the instructions under Part 1
EXECUTION

‣ starter-code > 3-functions-exercise (part 1)
LOCATION

PARAMETERS
CONDITIONALS & FUNCTIONS 60

CONDITIONALS & FUNCTIONS 61

DOES THIS CODE SCALE?
function helloVal () {
 console.log('hello, Val');
}

function helloOtto () {
 console.log('hello, Otto')
}

function sayHello(name) {
 console.log('Hello ' + name);
}

sayHello('Val');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

CONDITIONALS & FUNCTIONS 62

USING A PARAMETER parameter

argument

CONDITIONALS & FUNCTIONS 63

USING MULTIPLE PARAMETERS

function sum(x, y, z) {
 console.log(x + y + z)
}

sum(1, 2, 3);
=> 6

multiple parameter names
separated by commas

CONDITIONALS & FUNCTIONS 64

USING DEFAULT PARAMETERS
function multiply(x, y = 2) {
 console.log(x * y)
}

multiply(5, 6);
=> 30 // result of 5 * 6 (both arguments)
multiply(4);
=> 8 // 4 (argument) * 2 (default value)

default value to set for parameter
if no argument is passed when
the function is called

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Given a function and a set of arguments, predict the output of a
function

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXECUTION

‣ starter-code > 3-functions-exercise (part 2)
LOCATION

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

8 min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXECUTION

‣ starter-code > 3-functions-exercise (part 3)
LOCATION

EXERCISE

EXERCISE — FUNCTIONS

‣ Describe how parameters and arguments relate to functions
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

EXECUTION

THE return STATEMENT
CONDITIONALS & FUNCTIONS 68

CONDITIONALS & FUNCTIONS

return STATEMENT
 69

‣ Ends function’s execution
‣ Returns a value — the result of running the function

CONDITIONALS & FUNCTIONS

return STOPS A FUNCTION’S EXECUTION
 70

function speak(words) {
 return words;

 // The following statements will not run:
 let x = 1;
 let y = 2;
 console.log(x + y);
}

CONDITIONALS & FUNCTIONS

console.log() return

‣ Write a value at any point in a
program to the browser console

‣ Helpful for developer in debugging
‣ Not seen by user or used by app

console.log() vs return

‣ Sends a value back wherever the current
statement was triggered

‣ Can use a function to get a value and then
use that value elsewhere in your app

‣ Does not appear in the console unless
you’re executing commands there

vs

z = 7

CONDITIONALS & FUNCTIONS

return in action

function sum(x,y) {
 return x + y;
}

let z = sum(3,4);

call sum() function,
passing 3 and 4 as
arguments with x=3 and y=4,

return the result
of x + y, which is 7

EXERCISE

EXERCISE — FUNCTIONS LAB

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Individual or pair
TYPE OF EXERCISE

15 min 1. Write code to to calculate a customer's total cost in
dollars based on product price, tax rate, shipping cost,
and the currency they're using for the purchase (dollars
or euros).

2. BONUS 1: Convert your function to assume a currency of
"dollar" by default.

3. BONUS 2: Convert your code to use arrow functions.

EXECUTION

‣ starter-code > 4-price-calculator
LOCATION

CONDITIONALS & FUNCTIONS 74

Exit Tickets!
(Class #3)

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES - REVIEW
 75

‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS 76

NEXT CLASS PREVIEW
Scope & hoisting
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables

Q&A
CONDITIONALS & FUNCTIONS 77

