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1. Pull changes from the svodnik/JS-SF-12-resources repo 
to your computer 

2. Open the 18-react > starter-code folder in your editor 
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LEARNING OBJECTIVES
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At the end of this class, you will be able to

‣ Understand the roles of model, view, and controller 
‣ Describe the difference between frameworks and libraries 
‣ Recognize the primary uses of React 
‣ Build a React component function 
‣ Create a React component class 
‣ Implement composition in a React app 
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AGENDA
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‣ Model View Controller (MVC) 
‣ Frameworks and libraries 
‣ React overview 
‣ Creating React components



WEEKLY OVERVIEW
INTRODUCTION TO REACT

WEEK 11 Final project presentations!

WEEK 10 (holiday) / React 
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Final Project Checkin



‣ Check in on final project

10 min 1. Take turns checking in about where you are with your 
final project. If you have a working prototype, display your 
app in your browser, demonstrate its functionality, and 
explain what you plan to add to your app. 

2. Share a challenge you’ve run into with your project. If 
you’ve overcome it, describe how. If not, brainstorm 
resources and next steps with your group members.

EXERCISE

TIMING

KEY OBJECTIVE

ACTIVITY

‣ Groups of 3
TYPE OF EXERCISE
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What methods & properties have 
we used to change the DOM?



JAVASCRIPT DEVELOPMENT

REACT BASICS
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MODEL-VIEW-CONTROLLER (MVC)
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‣Model: data 
‣ View: user interface 
‣ Controller: coordinates between model and view
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MODEL-VIEW-CONTROLLER (MVC)
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User

1User Action

4 Update3 Notify

2 Update

Controller

Model View
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LIBRARIES VS FRAMEWORKS

Libraries
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LIBRARIES VS FRAMEWORKS

Libraries Frameworks
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YOUR CODE CALLS A LIBRARY
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your code library

Hey, would 
you do this 

thing for 
me?

Sure, here 
you go!
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A FRAMEWORK CALLS YOUR CODE
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your code framework

Yes! Here it 
is.

Okay, you 
wanted to 

do a thing?



INTRODUCTION TO REACT  17

LIBRARIES VS FRAMEWORKS

Libraries Frameworks
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VIRTUAL DOM
 18

from https://stackoverflow.com/questions/21109361/why-is-reacts-concept-of-virtual-dom-said-to-be-more-performant-than-dirty-mode#23995928

https://stackoverflow.com/questions/21109361/why-is-reacts-concept-of-virtual-dom-said-to-be-more-performant-than-dirty-mode#23995928
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COMPONENTS
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LET'S TAKE A CLOSER LOOK
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REACT DEVELOPER TOOLS
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‣ Chrome browser extension 

‣ adds developer tools tab for inspecting 
rendered React components



LET'S TAKE A CLOSER LOOK
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CREATING REACT 
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function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
}

function name has an initial cap
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function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
}

standard parameter name is props

FUNCTIONAL COMPONENTS
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function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
}

function always includes a return statement

FUNCTIONAL COMPONENTS
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function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
}

content of the return statement is JSX

FUNCTIONAL COMPONENTS
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function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
}

JSX can include JavaScript expressions wrapped in {}

FUNCTIONAL COMPONENTS



LET'S TAKE A CLOSER LOOK
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JSX
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‣ Extension to JavaScript 
‣ Lets you write JavaScript code that looks like HTML (actually XML) 
‣ Compiles to a JavaScript object 
‣ Supports JavaScript expressions in curly braces  
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ES6 SPREAD OPERATOR
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‣ ... characters 
‣ lets you specify an object as the parameter of a function, but 

transforms that argument into key-value pairs at runtime 
‣ essentially setting key-value pairs as HTML attributes in the React 

code 
‣ only evaluated at runtime, so it's based on the current value of the 

state at runtime
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ES6 SPREAD OPERATOR
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{ 
  firstName: 'Ben',  
  lastName: ‘Hector' 
} 

return <Greeting {...props} />;

is parsed as

return <Greeting firstName="Ben" lastName="Hector" />;
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‣ Commonly used for an array of values 
‣ array.map() function built into JavaScript 

‣ accepts a function as an argument 
‣ loops through the array, executing the specified function with each 

element as the argument 
‣ can return a JSX expression to build out an HTML structure based 

on a set of values



‣ Build a React functional component

10 min 1. The start file contains the components we’ve already been 
working with, along with additional data in the state variable. 

2. Create variables storing references to the two new elements in 
the DOM. 

3. Create components to render the contents of the new state 
properties. 

4. Call the render method for each of your two new components. 

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — CREATE FUNCTIONAL COMPONENTS

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 1-functional-component-exercise
LOCATION
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CLASS COMPONENTS



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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class name has an initial cap



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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component class is always based on React.Component



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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class definition always calls the render() function



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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render function call always includes a return statement



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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content of the return statement is JSX



class Welcome extends React.Component { 
  render() { 
    return ( 
      <p>Hello, {this.props.name}</p> 
    ); 
  } 
}

INTRODUCTION TO REACT

CLASS COMPONENTS
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JSX can include JavaScript expressions wrapped in {}



LET'S TAKE A CLOSER LOOK



‣ Build a React class component

10 min 1. The start file contains the components we’ve already been 
working with, along with additional data in the state variable. 

2. Create variables storing references to the two new elements in 
the DOM. 

3. Create components to render the contents of the new state 
properties. 

4. Call the render method for each of your two new components. 

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — CREATE CLASS COMPONENTS

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 3-class-component-exercise
LOCATION
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COMPOSITION
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‣ In parent class, call each child with JSX using element syntax 
‣ Pass necessary props as attributes, referencing this.props 
‣ For child classes, move data manipulation outside of render() 

method, and reference the result instead 
‣ Call ReactDOM.render() only on parent class 



LET'S TAKE A CLOSER LOOK



‣ Implement composition in a React app

20 min 1. Open CawCaw comp.png and examine the view you’ll be 
creating. 

2. Follow the instructions in script.js to build the User, Content, 
Date, and App components.

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — REUSE COMPONENTS WITH COMPOSITION

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 5-composition-exercise
LOCATION
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Mock from designer
[ 
  {category: "Sporting Goods", price: "$49.99", stocked: true, name: "Football"}, 
  {category: "Sporting Goods", price: "$9.99", stocked: true, name: "Baseball"}, 
  {category: "Sporting Goods", price: "$29.99", stocked: false, name: "Basketball"}, 
  {category: "Electronics", price: "$99.99", stocked: true, name: "iPod Touch"}, 
  {category: "Electronics", price: "$399.99", stocked: false, name: "iPhone 5"}, 
  {category: "Electronics", price: "$199.99", stocked: true, name: "Nexus 7"} 
];

Data returned from a JSON API
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DRAW SOME BOXES
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NAME THE BOXES (SEMANTICALLY!)

• FilterableProductTable 
• SearchBar 
• ProductTable 
• ProductCategoryRow 
• ProductRow 
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THINKING IN REACT
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MAKE A HIERARCHY

• FilterableProductTable 
‣  SearchBar 
‣  ProductTable 

» ProductCategoryRow 
» ProductRow 

components!



‣ Create a component hierarchy

10 min 1. Choose a section of your favorite website 
2. Write down the component hierarchy (remember the 

steps: 1. Mock, 2. Boxes, 3. Name, 4. Hierarchy) 
3. Don’t forget to use semantic names!

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE

‣ Individual/pair
TYPE OF EXERCISE
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Exit Tickets!
(Class #18)
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‣ Understand the roles of model, view, and controller 
‣ Describe the difference between frameworks and libraries 
‣ Recognize the primary uses of React 
‣ Build a React component function 
‣ Create a React component class 
‣ Implement composition in a React app 



Q&A
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