
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

INTRODUCTION TO REACT

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-12-resources repo
to your computer

2. Open the 18-react > starter-code folder in your editor

JAVASCRIPT DEVELOPMENT

INTRODUCTION TO
REACT

INTRODUCTION TO REACT

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to

‣ Understand the roles of model, view, and controller
‣ Describe the difference between frameworks and libraries
‣ Recognize the primary uses of React
‣ Build a React component function
‣ Create a React component class
‣ Implement composition in a React app

INTRODUCTION TO REACT

AGENDA
 5

‣ Model View Controller (MVC)
‣ Frameworks and libraries
‣ React overview
‣ Creating React components

WEEKLY OVERVIEW
INTRODUCTION TO REACT

WEEK 11 Final project presentations!

WEEK 10 (holiday) / React

INTRODUCTION TO REACT 7

Final Project Checkin

‣ Check in on final project

10 min 1. Take turns checking in about where you are with your
final project. If you have a working prototype, display your
app in your browser, demonstrate its functionality, and
explain what you plan to add to your app.

2. Share a challenge you’ve run into with your project. If
you’ve overcome it, describe how. If not, brainstorm
resources and next steps with your group members.

EXERCISE

TIMING

KEY OBJECTIVE

ACTIVITY

‣ Groups of 3
TYPE OF EXERCISE

INTRODUCTION TO REACT 9

What methods & properties have
we used to change the DOM?

JAVASCRIPT DEVELOPMENT

REACT BASICS

INTRODUCTION TO REACT

MODEL-VIEW-CONTROLLER (MVC)
 11

‣Model: data
‣ View: user interface
‣ Controller: coordinates between model and view

INTRODUCTION TO REACT

MODEL-VIEW-CONTROLLER (MVC)
 12

User

1User Action

4 Update3 Notify

2 Update

Controller

Model View

INTRODUCTION TO REACT 13

LIBRARIES VS FRAMEWORKS

Libraries

INTRODUCTION TO REACT 14

LIBRARIES VS FRAMEWORKS

Libraries Frameworks

INTRODUCTION TO REACT

YOUR CODE CALLS A LIBRARY
 15

your code library

Hey, would
you do this

thing for
me?

Sure, here
you go!

INTRODUCTION TO REACT

A FRAMEWORK CALLS YOUR CODE
 16

your code framework

Yes! Here it
is.

Okay, you
wanted to

do a thing?

INTRODUCTION TO REACT 17

LIBRARIES VS FRAMEWORKS

Libraries Frameworks

INTRODUCTION TO REACT

VIRTUAL DOM
 18

from https://stackoverflow.com/questions/21109361/why-is-reacts-concept-of-virtual-dom-said-to-be-more-performant-than-dirty-mode#23995928

https://stackoverflow.com/questions/21109361/why-is-reacts-concept-of-virtual-dom-said-to-be-more-performant-than-dirty-mode#23995928

INTRODUCTION TO REACT

COMPONENTS
 19

LET'S TAKE A CLOSER LOOK

INTRODUCTION TO REACT

REACT DEVELOPER TOOLS
 21

‣ Chrome browser extension

‣ adds developer tools tab for inspecting
rendered React components

LET'S TAKE A CLOSER LOOK

INTRODUCTION TO REACT

CREATING REACT
COMPONENTS

INTRODUCTION TO REACT

FUNCTIONAL
COMPONENTS

INTRODUCTION TO REACT

FUNCTIONAL COMPONENTS
 25

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

function name has an initial cap

INTRODUCTION TO REACT 26

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

standard parameter name is props

FUNCTIONAL COMPONENTS

INTRODUCTION TO REACT 27

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

function always includes a return statement

FUNCTIONAL COMPONENTS

INTRODUCTION TO REACT 28

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

content of the return statement is JSX

FUNCTIONAL COMPONENTS

INTRODUCTION TO REACT 29

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

JSX can include JavaScript expressions wrapped in {}

FUNCTIONAL COMPONENTS

LET'S TAKE A CLOSER LOOK

INTRODUCTION TO REACT

JSX
 31

‣ Extension to JavaScript
‣ Lets you write JavaScript code that looks like HTML (actually XML)
‣ Compiles to a JavaScript object
‣ Supports JavaScript expressions in curly braces

INTRODUCTION TO REACT

ES6 SPREAD OPERATOR
 32

‣ ... characters
‣ lets you specify an object as the parameter of a function, but

transforms that argument into key-value pairs at runtime
‣ essentially setting key-value pairs as HTML attributes in the React

code
‣ only evaluated at runtime, so it's based on the current value of the

state at runtime

INTRODUCTION TO REACT

ES6 SPREAD OPERATOR
 33

{
 firstName: 'Ben',
 lastName: ‘Hector'
}

return <Greeting {...props} />;

is parsed as

return <Greeting firstName="Ben" lastName="Hector" />;

INTRODUCTION TO REACT

LOOPING IN REACT COMPONENTS
 34

‣ Commonly used for an array of values
‣ array.map() function built into JavaScript

‣ accepts a function as an argument
‣ loops through the array, executing the specified function with each

element as the argument
‣ can return a JSX expression to build out an HTML structure based

on a set of values

‣ Build a React functional component

10 min 1. The start file contains the components we’ve already been
working with, along with additional data in the state variable.

2. Create variables storing references to the two new elements in
the DOM.

3. Create components to render the contents of the new state
properties.

4. Call the render method for each of your two new components.

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — CREATE FUNCTIONAL COMPONENTS

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 1-functional-component-exercise
LOCATION

INTRODUCTION TO REACT

CLASS COMPONENTS

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 37

class name has an initial cap

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 38

component class is always based on React.Component

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 39

class definition always calls the render() function

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 40

render function call always includes a return statement

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 41

content of the return statement is JSX

class Welcome extends React.Component {
 render() {
 return (
 <p>Hello, {this.props.name}</p>
);
 }
}

INTRODUCTION TO REACT

CLASS COMPONENTS
 42

JSX can include JavaScript expressions wrapped in {}

LET'S TAKE A CLOSER LOOK

‣ Build a React class component

10 min 1. The start file contains the components we’ve already been
working with, along with additional data in the state variable.

2. Create variables storing references to the two new elements in
the DOM.

3. Create components to render the contents of the new state
properties.

4. Call the render method for each of your two new components.

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — CREATE CLASS COMPONENTS

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 3-class-component-exercise
LOCATION

INTRODUCTION TO REACT

COMPOSITION

INTRODUCTION TO REACT

COMPOSITION
 46

‣ In parent class, call each child with JSX using element syntax
‣ Pass necessary props as attributes, referencing this.props
‣ For child classes, move data manipulation outside of render()

method, and reference the result instead
‣ Call ReactDOM.render() only on parent class

LET'S TAKE A CLOSER LOOK

‣ Implement composition in a React app

20 min 1. Open CawCaw comp.png and examine the view you’ll be
creating.

2. Follow the instructions in script.js to build the User, Content,
Date, and App components.

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE — REUSE COMPONENTS WITH COMPOSITION

‣ Solo or in pairs
TYPE OF EXERCISE

‣ starter-code > 5-composition-exercise
LOCATION

INTRODUCTION TO REACT

THINKING IN REACT

INTRODUCTION TO REACT

THINKING IN REACT
 50

Mock from designer
[
 {category: "Sporting Goods", price: "$49.99", stocked: true, name: "Football"},
 {category: "Sporting Goods", price: "$9.99", stocked: true, name: "Baseball"},
 {category: "Sporting Goods", price: "$29.99", stocked: false, name: "Basketball"},
 {category: "Electronics", price: "$99.99", stocked: true, name: "iPod Touch"},
 {category: "Electronics", price: "$399.99", stocked: false, name: "iPhone 5"},
 {category: "Electronics", price: "$199.99", stocked: true, name: "Nexus 7"}
];

Data returned from a JSON API

INTRODUCTION TO REACT

THINKING IN REACT
 51

DRAW SOME BOXES

INTRODUCTION TO REACT

THINKING IN REACT
 52

NAME THE BOXES (SEMANTICALLY!)

• FilterableProductTable
• SearchBar
• ProductTable
• ProductCategoryRow
• ProductRow

INTRODUCTION TO REACT

THINKING IN REACT
 53

MAKE A HIERARCHY

• FilterableProductTable
‣ SearchBar
‣ ProductTable

» ProductCategoryRow
» ProductRow

components!

‣ Create a component hierarchy

10 min 1. Choose a section of your favorite website
2. Write down the component hierarchy (remember the

steps: 1. Mock, 2. Boxes, 3. Name, 4. Hierarchy)
3. Don’t forget to use semantic names!

EXERCISE

TIMING

KEY OBJECTIVE

EXERCISE

‣ Individual/pair
TYPE OF EXERCISE

INTRODUCTION TO REACT 55

Exit Tickets!
(Class #18)

INTRODUCTION TO REACT

LEARNING OBJECTIVES - REVIEW
 56

‣ Understand the roles of model, view, and controller
‣ Describe the difference between frameworks and libraries
‣ Recognize the primary uses of React
‣ Build a React component function
‣ Create a React component class
‣ Implement composition in a React app

Q&A
INTRODUCTION TO REACT 57

