
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CLOSURES & THE MODULE PATTERN

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-12-resources repo
to your computer

2. Open the 14-closures-module-pattern folder in your
code editor

JAVASCRIPT DEVELOPMENT

CLOSURES &
THE MODULE PATTERN

CLOSURES & THE MODULE PATTERN

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to

‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.
‣ Understand and explain Javascript context.

CLOSURES & THE MODULE PATTERN

AGENDA
 5

‣ Closures
‣ IIFEs
‣ Module pattern
‣ this

WEEKLY OVERVIEW
CLOSURES & THE MODULE PATTERN

WEEK 10 (holiday) / React

WEEK 8 Closures & the module pattern / CRUD & Firebase

WEEK 9 Deploying your app / Final project lab

CLOSURES & THE MODULE PATTERN

HOMEWORK REVIEW

‣ Check in on Feedr project

6 min 1. Take turns checking in on your Feedr progress — what
do you have done? what’s your next step?

2. If you’re currently wrestling with a challenge, share it
with your group members and brainstorm together how
you might move forward. If you’ve hit a challenge and
worked through it, describe the issue and how you
resolved it.

EXERCISE

TIMING

KEY OBJECTIVE

ACTIVITY

‣ Groups of 3-4
TYPE OF EXERCISE

‣ Check in on final projects

6 min 1. Describe your idea for your final project:
• What API(s) will you use?
• How will users interact with your app?
• What will the DOM manipulation look like?

2. Share your next step. If you’re not sure, share where you
are right now and brainstorm with your group what next
steps might look like.

EXERCISE

TIMING

KEY OBJECTIVE

ACTIVITY

‣ Groups of 3-4
TYPE OF EXERCISE

CLOSURES & THE MODULE PATTERN 10

1. What are ‘mixins’?
2. You mentioned that classes are used in React.... do

most new frameworks use classes?
3. Is closure the same as scope?

Exit Ticket Questions

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES
CLOSURES & THE MODULE PATTERN 12

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN

SCOPE
 14

‣ Describes the set of variables you have access to

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

CLOSURES & THE MODULE PATTERN

GLOBAL SCOPE
 15

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

a variable declared outside of the function is in the global scope

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

CLOSURES & THE MODULE PATTERN

LOCAL SCOPE
 16

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

CLOSURES & THE MODULE PATTERN

BLOCK SCOPE
 17

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope.

a variable with block
scope is not accessible
outside of its block

let creates a local
variable within any block,
such as an if statement

CLOSURES & THE MODULE PATTERN

CLOSURES
 18

‣A closure is an inner function that has access to the
outer (enclosing) function’s variables.
‣You create a closure by nesting a function inside
another function.

function getTemp() {
 let temp = 75;
 let tempAccess = function() {
 console.log(temp);
 }
 return tempAccess;
}

CLOSURES & THE MODULE PATTERN

CLOSURES
 19

‣ A closure is an inner function that has access to the outer (enclosing)
function’s variables.

the tempAccess()
function is a
closure

outer function
getTemp() returns
a reference to the
inner function
tempAccess()

CLOSURES & THE MODULE PATTERN

BUILDING BLOCKS OF CLOSURES
 20

1. nested functions
2. scope

inner function has access to outer function’s
variables

3. return statements

outer function returns reference to inner function

LET'S TAKE A CLOSER LOOK

CLOSURES & THE MODULE PATTERN

CLOSURES — KEY POINTS
 22

‣Closures have access to the outer function’s variables
(including parameters) even after the outer function
returns.

‣Closures store references to the outer function’s
variables, not the actual values.

LET'S TAKE A CLOSER LOOK

CLOSURES & THE MODULE PATTERN

WHAT ARE CLOSURES USED FOR?
 24

‣Turning an outer variable into a private variable
‣Namespacing private functions

LAB — CLOSURES

‣ Understand and explain closures
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

15 min
EXECUTION

‣ starter-code > 1-closures-lab
LOCATION

1. Follow the instructions in app.js to build and test code that uses
a closure.

Immediately-invoked
function expressions

CLOSURES & THE MODULE PATTERN 26

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN 28

Immediately-invoked function expression (IIFE)

‣ A function expression that is executed as soon as it is declared
‣ Pronounced “iffy”

CLOSURES & THE MODULE PATTERN 29

IIFE based on a function expression

let countDown = function() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THE MODULE PATTERN 30

IIFE based on a function expression

let countDown = function() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THE MODULE PATTERN 31

IIFE based on a function declaration

(function countDown() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

CLOSURES & THE MODULE PATTERN 32

IIFE based on a function declaration

(function countDown() {
 let counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

LET'S TAKE A CLOSER LOOK

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN 34

PUTTING IT ALL TOGETHER!
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN

THE MODULE PATTERN
 36

‣Using an IIFE to return an object literal
‣The methods of the returned object can access the
private properties and methods of the IIFE (closures!),
but other code cannot do this
‣This means specific parts of the IIFE are not available
in the global scope

let counter = function() {
 let count = 0;

}();

CLOSURES & THE MODULE PATTERN

BUILDING A MODULE
 37

from an IIFE

containing closures
returning an
object literal

return {
 reset: function() {
 count = 0;
 },
 get: function() {
 return count;
 },
 increment: function() {
 count++;
 }
};

CLOSURES & THE MODULE PATTERN

BENEFITS OF THE MODULE PATTERN
 38

‣Keeps some functions and variables private
‣Avoids polluting the global scope
‣Organizes code into objects

LET'S TAKE A CLOSER LOOK

12 min 1. In app.js, complete the module so it exports methods for
the behaviors described in the comment at the top of the
file.

2. When your code is complete and works properly, the
statements at the bottom of the file should all return the
expected values in the console.

3. BONUS: Add a "tradeIn" method that lets you change the
make of the car and refuels it. Be sure the getMake
method still works after doing a tradeIn.

EXERCISE

TIMING

EXERCISE — CREATE A MODULE

‣ Pair
TYPE OF EXERCISE

‣ start files > 4-modules-exercise
LOCATION

this
CLOSURES & THE MODULE PATTERN 41

CLOSURES & THE MODULE PATTERN

CONTEXT AND THIS
 42

•Functions are always executed in relation to some
object

•Context refers to whatever object is responsible for
executing a function

•This object can be referenced using the keyword
this

•In other words, this represents whatever object is
in context when a function runs

CLOSURES & THE MODULE PATTERN

HOW IS CONTEXT DECIDED?
 43

•At runtime
•Based on how the function is called

CLOSURES & THE MODULE PATTERN

CONTEXT RULES
 44

situation what this maps to

method invocation the object that owns the method

constructor function the newly created object

event handler the element that the event was fired from

function invocation default: the global object (window)
strict mode: undefined

arrow function the context of the caller

LET'S TAKE A CLOSER LOOK

5 min 1. In app.js, read through the code without running it.
2. Predict the results of the two console.log statements.
3. Run the code and check the results against your

predictions. If the results were different, identify why.

EXERCISE

TIMING

EXERCISE — PREDICT CONTEXT

‣ Groups of 2 or 3
TYPE OF EXERCISE

‣ start files > 8-this-exercise
LOCATION

CLOSURES & THE MODULE PATTERN 47

Exit Tickets!
(Class #14)

CLOSURES & THE MODULE PATTERN

LEARNING OBJECTIVES - REVIEW
 48

‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.
‣ Understand and explain Javascript context.

CLOSURES & THE MODULE PATTERN 49

NEXT CLASS PREVIEW
In-class lab: Intro to CRUD and Firebase
‣ Explain what CRUD is. (Preview: Create, Read, Update, Delete)
‣ Explain the HTTP methods associated with CRUD.
‣ Implement Firebase in an application.
‣ Build a full-stack app.

Q&A
CLOSURES & THE MODULE PATTERN 50

