
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

SCOPE & OBJECTS

HELLO!
 2

1. Pull changes from the vodnik/JS-SF-12-resources repo to
your computer:
‣ Open the terminal
‣ cd to the ~/Documents/JSD/JS-SF-12-resources directory

‣ Type git pull and press return
2. In your code editor, open the following folder:  

Documents/JSD/JS-SF-12-resources/04-scope-objects

JAVASCRIPT DEVELOPMENT

SCOPE & OBJECTS

SCOPE & OBJECTS

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables
‣ Identify likely objects, attributes, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation

SCOPE & OBJECTS

AGENDA
 5

‣ Set up homework repo & submit homework
‣ Variable scope
‣ The var, let, and const keywords
‣ Hoisting
‣ Objects

WEEKLY OVERVIEW
SCOPE & OBJECTS

WEEK 5 Events & jQuery / Ajax & APIs

WEEK 3

WEEK 4

Scope & Objects / Slack Bot Lab

JSON & Intro to DOM / DOM & jQuery

SCOPE & OBJECTS

EXIT TICKET QUESTIONS
 7

1. Hoisting. How does it work?
2. What is the difference between calling a function from inside another

function and actually writing a function inside another function....?
Like a nested function, and I know there is some funkyness with
scope with these sorts of things functions calling functions

3. (suggestion:) More coding!
4. I prefer writing the code solo, then reviewing in a group

SCOPE & OBJECTS

Where we are
 8

Class 00 1901 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

joggingstanding walking

SCOPE & OBJECTS

HOMEWORK REVIEW

5 min 1. Take turns showing and explaining your code.
2. Share 1 thing you’re excited about being able to

accomplish.
3. Have each person in the group note 1 thing they found

challenging for the homework. Discuss as a group how
you think you could solve each problem.

4. Did you work on the Random Address Generator bonus
exercise? Show your group what you did!

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Groups of 3
TYPE OF EXERCISE

USING THE JS-SF-12-HOMEWORK REPO 11

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

SUBMIT HOMEWORK: SETUP (ONE TIME ONLY)
 12

On github.com:

‣ Open https://git.generalassemb.ly/vodnik/JS-SF-12-homework
‣ Fork this repo to your GitHub account
‣ Clone your fork to your computer, within your JSD folder

https://git.generalassemb.ly/vodnik/JS-SF-12-homework

USING THE JS-SF-12-HOMEWORK REPO 13

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-12-HOMEWORK REPO 14

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

HOMEWORK FOLDER LOCATION
 15

JSD

JS-SF-12-homework

JS-SF-12-resources

username.git.generalassemb.ly

new folder for
your clone of the
homework repo

SCOPE & OBJECTS

SUBMIT HOMEWORK: SETUP (CONTINUED)
 16

‣ Within your new JS-SF-12-homework folder, create a new subfolder
and name it your first name, a hyphen, and your github name. For
instance, Sasha’s folder would be Sasha-vodnik.

SCOPE & OBJECTS

PERSONAL ASSIGNMENTS FOLDER LOCATION
 17

JSD

JS-SF-12-homework

JS-SF-12-resources

username.git.generalassemb.ly

new folder for
your completed
assignments

firstname-username

SCOPE & OBJECTS

SETUP DONE!
 18

‣ Reminder: Now that you’ve completed the preceding setup, you
never have to do it again!

‣ Each time you submit homework for the rest of this course, you’ll
repeat only the steps that follow.

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 1
 19

In Finder:

‣ navigate to firstname-username folder (example: Sasha-vodnik)
‣ copy your completed Homework-1 folder from last Wednesday into

your firstname-username folder.

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 1 ILLUSTRATION
 20

JS-SF-12-resources JS-SF-12-homework

02-data-types-loops

03-conditionals-functions

start-files

Homework-1

firstname-github account

Homework-1

copy

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 2
 21

In Terminal:

‣ navigate to JS-SF-12-homework folder
‣ git add .
‣ git commit -m “submitting Homework 1”
‣ git push origin master

USING THE JS-SF-12-HOMEWORK REPO 22

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-12-HOMEWORK REPO 23

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-12-HOMEWORK REPO 24

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS

SUBMIT HOMEWORK: STEP 3
 25

In Browser:

‣ Go to your fork of JS-SF-12-homework on git.generalassemb.ly

‣ click New pull request
‣ click Create pull request
‣ click Create pull request (again)

USING THE JS-SF-12-HOMEWORK REPO 26

vodnik/
JS-SF-12-homework

<you>/
JS-SF-12—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SCOPE & OBJECTS 27

Why do we use different networks to connect to the
Internet when we’re in different places?
‣home
‣GA
‣in a car
‣on BART/MUNI

SCOPE
SCOPE & OBJECTS 28

SCOPE & OBJECTS

SCOPE
 29

‣ Describes the set of variables you have access to

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

SCOPE & OBJECTS

GLOBAL SCOPE
 30

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

a variable declared outside of the function is in the global scope

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

SCOPE & OBJECTS

FUNCTION SCOPE
 31

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have function scope, which is one
type of local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

SCOPE & OBJECTS

BLOCK SCOPE
 32

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope, which is another type of local scope.

let creates a local variable within
any block, such as an if statement

a variable with block
scope is not accessible
outside of its block

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

3 min 1. Describe the difference between global scope, local
scope, function scope, and block scope.

2. Collaborate to write code that includes at least one
variable with global scope, one variable with function
scope, and one variable with block scope.

EXECUTION

LAB — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

3 min
EXECUTION

‣ starter code > 1-scope-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > main.js to complete parts A
and B.

var, let, const,
AND SCOPE

SCOPE & OBJECTS 36

SCOPE & OBJECTS

var
 37

var results = [0,5,2];

» original JS keyword for creating variables
» only type of local scope it can create is function scope

SCOPE & OBJECTS

let
 38

let results = [0,5,2];

‣ let
» newer keyword (ES6)
» local scope within functions and within any block (including loops

and conditionals)

SCOPE & OBJECTS

const
 39

‣ used to declare constants
» immutable: once you’ve declared a value using const, you can’t

change the value in that scope
» by contrast, variables declared with var or let are mutable,

meaning their values can be changed

const salesTax = 0.0875;

‣ const
» newer keyword (ES6)
» local scope within functions and within any block (including loops

and conditionals)

let x = 1;
if (true) {
 let x = 2;
 console.log(x); // 2
}
console.log(x); // 1

SCOPE & OBJECTS

let/const vs var
 40

var x = 1;
if (true) {
 var x = 2;
 console.log(x); // 2
}
console.log(x); // 2

‣ let & const create local scope within any block
(including loops and conditionals) but var does not

global scope global scope

treated as
local scope by
let statement

SCOPE & OBJECTS 41

‣ let and const are not supported by older browsers
» see caniuse.com, search on let

‣ babel.js (babeljs.io) allows you to transpile newer code into code that
works with older browsers as well

‣ we will rely on let and const in class

var, let, const, AND BROWSER SUPPORT

http://caniuse.com
http://babeljs.io

SCOPE & OBJECTS 42

var, let, AND const
keyword where does it

create local scope?
can you change
the value in the
current scope?

which browsers
support it?
(modern or all)

var
within the code
block of a function
only

yes all browsers

let within any code
block yes only modern

browsers

const within any code
block no only modern

browsers

LET'S TAKE A CLOSER LOOK

LAB — LET, VAR, AND CONST

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

3 min
EXECUTION

‣ starter code > 2-let-var-const-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > app.js to complete parts A
and B.

SCOPE & OBJECTS

HOISTING
 45

JavaScript moves some declarations to the top of a scope

SCOPE & OBJECTS

HOISTING
 46

function foo() {
 console.log(“Hello!”);
 var x = 1;
}

Code as written by developer

function foo() {
 var x;
 console.log(“Hello!”);
 x = 1;
}

Code as interpreted by parser

var x

Variable names declared with var are hoisted, but not their values.

SCOPE & OBJECTS

HOISTING
 47

function foo() {
 console.log(“Hello!”);
 let x = 1;
}

Code as written by developer

function foo() {
 console.log(“Hello!”);
 let x = 1;
}

Code as interpreted by parser

Variables declared with let or const are not hoisted.

SCOPE & OBJECTS

HOISTING
 48

foo();

function foo() {
 console.log(“Hello!”);
}

Code as written by developer

function foo() {
 console.log(“Hello!”);
}

foo();

Code as interpreted by parser

Function declarations are hoisted.
Your code can call a hoisted function before it has been declared

function foo() {
 console.log(“Hello!”);
}

SCOPE & OBJECTS

HOISTING
 49

Function expressions are treated like other variables

foo();

var foo = function() {
 console.log(“Hello!”);
}

Code as written by developer

var foo;

foo(); // error: foo is
 // not a function

foo = function() {
 console.log(“Hello!”);
}

Code as interpreted by parser

var foo

SCOPE & OBJECTS

HOISTING
 50

Function expressions are treated like other variables

foo();

let foo = function() {
 console.log(“Hello!”);
}

Code as written by developer

foo(); // error: bar is
 // not defined

let foo = function() {
 console.log(“Hello!”);
}

Code as interpreted by parser

SCOPE & OBJECTS 51

VARIABLES AND HOISTING
keyword variable name hoisted? variable value hoisted?

let no no

const no no

var yes no

SCOPE & OBJECTS 52

FUNCTIONS AND HOISTING
function type function name hoisted? function content

hoisted?

function declaration yes yes

function expression
using let

no no

function expression
using var yes no

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — HOISTING

‣ Create a program that hoists variables
KEY OBJECTIVE

‣ Groups of 3
TYPE OF EXERCISE

2 min 1. Examine the code on the whiteboard.
2. Discuss with your group which parts of the code are

hoisted.
3. Predict the result of each of the first four statements.

EXECUTION

OBJECTS
OBJECTS & JSON 55

3 min 1. For the thing you’ve been assigned, make a list of
attributes (descriptions) and actions (things it can do).EXERCISE

TIMING

EXERCISE — OBJECTS

‣ Groups of 2-3
TYPE OF EXERCISE

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

OBJECTS & JSON 57

OBJECTS ARE A SEPARATE DATA TYPE

STRING NUMBER ARRAY BOOLEAN OBJECT

OBJECTS & JSON 58

AN OBJECT IS A COLLECTION OF PROPERTIES

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
}

properties

OBJECTS & JSON 59

PROPERTY = KEY & VALUE
‣ A property is an association between a key and a value

‣ key: name (often descriptive) used to reference the data
‣ value: the data stored in that property

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
}

valueskeys

OBJECTS & JSON 60

KEY-VALUE PAIR
‣ A property is sometimes referred to as a key-value pair

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”
} key-value pair

OBJECTS & JSON 61

AN OBJECT IS NOT ORDERED
[
 “apple”,
 “pear”,
 “banana”
]

{
 fruit: “apple”,
 vegetable: “carrot”,
 fungus: “trumpet mushroom”
}

0
1
2

ARRAY
ordered

OBJECT
not ordered

OBJECTS & JSON 62

A METHOD IS A PROPERTY WHOSE VALUE IS A
FUNCTION

let favorites = {
 fruit: “apple”,
 vegetable: “carrot”,
 declare: function() {
 console.log(“I like fruits and vegetables!”);
 }
}

method

DATA TYPES

dot notation
square
bracket
notation

TWO WAYS TO GET/SET PROPERTIES

OBJECTS & JSON 64

GETTING A PROPERTY VALUE WITH DOT NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites.fruit

> “apple”

favorites.veg

> “carrot”

object getting properties

favorites.declare()

> “I like fruit and veg”

calling a method

property name

object name

method name
object name

OBJECTS & JSON 65

SETTING A PROPERTY VALUE WITH DOT NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites.fungus = ‘shiitake’;

favorites.pet = ‘hamster’;

object setting properties

favorites.beAmbivalent = function() {

 console.log(“I like other things”);

};

setting a method

OBJECTS & JSON 66

GETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites[fruit]

> “apple”

favorites[veg]

> “carrot”

object getting properties

property name

object name

OBJECTS & JSON 67

SETTING A PROPERTY VALUE WITH SQUARE BRACKET NOTATION

let favorites = {

 fruit: “apple”,

 veg: “carrot”,

 declare: function() {

 console.log(“I like fruit and veg”);

 }

}

favorites[fungus] = ‘shiitake’;

favorites[pet] = ‘hamster’;

object setting properties

favorites[beAmbivalent] = function() {

 console.log(“I like other things”);

};

setting a method

LET'S TAKE A CLOSER LOOK

3 min 1. On your desk or on the wall, write code to create a
variable whose name corresponds to the thing you were
assigned in the previous exercise (cloud, houseplant,
nation, office chair, or airplane).

2. Write code to add a property to the object and specify a
value for the property.

3. Write code to add a method to the object, and specify a
value for the method (use a comment or console.log()
statement for the function body).

4. BONUS: Rewrite your answers for 1-3 as a single
JavaScript statement.

EXERCISE
TIMING

EXERCISE — OBJECTS

‣ Groups of 2-3 (same group as for previous exercise)
TYPE OF EXERCISE

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

ARRAY ITERATOR
METHODS

OBJECTS & JSON 70

DATA TYPES & LOOPS 71

ARRAY ITERATOR METHODS
forEach() Executes a provided function once per array element

every() Tests whether all elements in the array pass the test
implemented by the provided function

some() Tests whether some element in the array passes the
text implemented by the provided function

filter() Creates a new array with all elements that pass the test
implemented by the provided function

map() Creates a new array with the results of calling a
provided function on every element in this array

parameter serves as a
variable referencing the
current array element

DATA TYPES & LOOPS 72

method name
function to execute for
each array elementarray name

forEach()

teams.forEach(function(element) {
 console.log(element);
});

DATA TYPES & LOOPS 73

forEach() EXAMPLE

let teams = ['Bruins', 'Bears', 'Ravens', 'Ducks'];

teams.forEach(function(element) {
 console.log(element);
});

REAL WORLD
SCENARIOS

OBJECTS & JSON 74

OBJECTS & JSON 75

REAL WORLD SCENARIO
A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 76

OBJECTS = NOUNS

shopping cart
implicit object:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 77

PROPERTIES = ADJECTIVES

implicit properties:

price
color

for each pair of shoes:

contents
total
shipping
tax

for the shopping cart:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

OBJECTS & JSON 78

METHODS = VERBS

implicit methods:

add to cart

for each pair of shoes:

calculate shipping
calculate tax
complete purchase
remove item

for the shopping cart:

A user, browsing on a shopping website, searches for size 12
running shoes, and examines several pairs before
purchasing one.

10 min 1. Read through your scenario together.
2. Identify and write down likely objects, properties, and

methods in your scenario. (Remember to consider
implicit objects as well as explicit ones.)

3. Choose someone to report your results to the class.

EXERCISE

TIMING

EXERCISE — REAL WORLD SCENARIOS & OBJECTS

‣ Identify likely objects, properties, and methods in real-world
scenarios

KEY OBJECTIVE

‣ Groups of 3-4
TYPE OF EXERCISE

20 min 1. Open starter-code > 4-object-exercise >
monkey.js in your editor.

2. Create objects for 3 different monkeys each with the
properties and methods listed in the start file.

3. Practice retrieving properties and using methods with
both dot notation and bracket syntax.

4. BONUS: Rewrite your code to use a constructor function.

LAB

TIMING

LAB — OBJECTS

‣ Create JavaScript objects using object literal notation
KEY OBJECTIVE

‣ Individual or pair
TYPE OF EXERCISE

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#Using_a_constructor_function

JSON & DOM

JSON IS A DATA FORMAT BASED ON JAVASCRIPT
 81

let instructor = {
 firstName: ‘Sasha’,
 lastName: ‘Vodnik’,
 city: ‘San Francisco’,
 classes: [
 ‘JSD’, ‘FEWD’
],
 classroom: 7,
 launched: true,
 dates: {
 start: 20180205,
 end: 20180406
 },
};

{
 “firstName”: “Sasha”,
 “lastName”: “Vodnik”,
 “city”: “San Francisco”,
 “classes”: [
 “JSD”, “FEWD”
],
 “classroom”: 7,
 “launched”: true,
 “dates”: {
 “start”: 20180205,
 “end”: 20180406
 }
}

object JSON

JSON & DOM

JSON
 82

‣ Easy for humans to read and write
‣ Easy for programs to parse and

generate

{
 “firstName”: “Sasha”,
 “lastName”: “Vodnik”,
 “city”: “San Francisco”,
 “classes”: [
 “JSD”, “FEWD”
],
 “classroom”: 7,
 “launched”: true,
 “dates”: {
 “start”: 20180205,
 “end”: 20180406
 }
}

JSON & DOM

JSON IS NOT JAVASCRIPT-SPECIFIC
 83

‣ Used across the web by programs written in many languages

JSON & DOM

JSON RULES
 84

‣ Property names must be double-quoted strings.
‣ Trailing commas are forbidden.
‣ Leading zeroes are prohibited.
‣ In numbers, a decimal point must be followed by at least one digit.
‣ Most characters are allowed in strings; however, certain characters

(such as ', ", \, and newline/tab) must be 'escaped' with a preceding
backslash (\) in order to be read as characters (as opposed to JSON
control code).

‣ All strings must be double-quoted.
‣ No comments!

JSON & DOM

TO CONVERT AN OBJECT TO JSON
 85

JSON.stringify(object);

JSON & DOM

TO CONVERT JSON TO AN OBJECT
 86

JSON.parse(json);

LET'S TAKE A LOOK

3 min 1. Write JSON code that contains an error.
2. Write your code on the wall.
3. When everyone’s code is done, we will look at the code

together as a class and practice identifying errors.

EXERCISE

TIMING

EXERCISE — JSON

‣ Implement and interface with JSON data
KEY OBJECTIVE

‣ Groups of 2-3
TYPE OF EXERCISE

JSON & DOM

YAY, I GOT SOME DATA!

 89

let person = '{"firstName":
"Sasha","lastName": "Vodnik","city":
"San Francisco","classes": ["JSD",
"FEWD"],"classroom": 7,”launched":
true,"dates": {"start": 20180205,"end":
20180406}}’;

WAIT, WHAT?!

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 90

1. PARSE THE JSON TO A JAVASCRIPT OBJECT (OR ARRAY!)

2. VIEW THE RESULTING DATA STRUCTURE

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

3. LOCATE THE DATA YOU WANT TO REFERENCE

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 91

1. PARSE THE JSON TO A JAVASCRIPT OBJECT (OR ARRAY!)

let person = '{"firstName":
"Sasha","lastName": "Vodnik","city":
"San Francisco","classes": ["JSD",
"FEWD"],"classroom": 7,”launched":
true,"dates": {"start": 20180205,"end":
20180406}}’;

let personObject = JSON.parse(person);

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 92

2. VIEW THE RESULTING DATA STRUCTURE

let personObject = JSON.parse(person);
console.log(personObject);
>

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 93

3. LOCATE THE DATA YOU WANT TO REFERENCE

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 94

console.log(personObject.city);
> “San Francisco”

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

direct property:

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 95

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

console.log(personObject.classes);
> [“JSD”,”FEWD”]

console.log(personObject.classes[0]);
> “JSD”

direct property > array element

JSON & DOM

WORKING WITH NESTED DATA STRUCTURES
 96

4. USE DOT SYNTAX OR SQUARE BRACKET NOTATION TO MOVE DOWN A LEVEL, THEN REPEAT

console.log(personObject.dates);
> {end:20171113,start:20170906}

console.log(personObject.dates.start);
> 20170906

direct property > nested object property

LET'S TAKE A LOOK

10 min 1. Open starter-code > 2-json-exercise > app.js in
your editor.

2. Follow the instructions to write code that produces the
stated output.

LAB

TIMING

LAB — JSON

‣ Implement and interface with JSON data
KEY OBJECTIVE

‣ Individual or pair
TYPE OF EXERCISE

SCOPE & OBJECTS 99

Exit Tickets!
(Class #4)

SCOPE & OBJECTS

LEARNING OBJECTIVES - REVIEW
 100

‣ Determine the scope of local and global variables
‣ Create a program that hoists variables
‣ Identify likely objects, attributes, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation

SCOPE & OBJECTS 101

NEXT CLASS PREVIEW
Slack Bot Lab
‣ Install and configure all utilities needed to build a bot using the Hubot

framework
‣ Write scripts that allow your bot to interact with users of the class

Slack organization

Q&A
SCOPE & OBJECTS 102

