
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CONDITIONALS & FUNCTIONS

HELLO!
 2

1. Pull changes from the svodnik/JS-SF-12-resources repo to
your computer:
‣ Open the terminal
‣ cd to the Documents/JSD/JS-SF-12-resources directory

‣ Type git pull and press return
2. In your code editor, open the following folder:  

Documents/JSD/JS-SF-12-resources/03—conditionals-
functions

JAVASCRIPT DEVELOPMENT

CONDITIONALS &
FUNCTIONS

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES
 4

At the end of this class, you will be able to
‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS

AGENDA
 5

‣ Comparison operators
‣ Logical operators
‣ Conditional statements
‣ Functions

WEEKLY OVERVIEW
CONDITIONALS & FUNCTIONS

WEEK 3

WEEK 4

Scope & Objects / Slack Bot Lab

JSON & Intro to DOM / DOM & jQuery

WEEK 2 Data Types & Loops / Conditionals & Functions

CONDITIONALS & FUNCTIONS 7

EXIT TICKET QUESTIONS
1. I'm wondering if iterator methods that we did not cover in class have

the same style.
2. Difference between function and method.
3. How can we apply what we are learning in project examples?
4. I'm not sure what I'm not sure about. I feel like I understand when I

see the answer but I can't write it on my own without reference.

CONDITIONALS & FUNCTIONS 8

How to you decide what to have for dinner?

‣ What factors do you consider?
‣ How do you decide between them?

CONDITIONALS
CONDITIONALS & FUNCTIONS 9

CONDITIONALS & FUNCTIONS 10

CONDITIONAL STATEMENTS
‣ Decide which blocks of code to execute and which to skip, based on the

results of tests that we run
‣ Known as control flow statements, because they let the program

make decisions about which statement should be executed next, rather
than just going in order

if STATEMENT
CONDITIONALS & FUNCTIONS 11

if (expression) { code } if (expression) { 
 code 
}

‣JavaScript doesn’t care about white space, so these are equivalent.
‣However, putting block contents on a separate line is best practice
for code readability.

CONDITIONALS & FUNCTIONS 12

BOOLEAN VALUES
‣ A separate data type
‣ Only valid values are true or false
‣ Named after George Boole, a mathematician

true false

CONDITIONALS & FUNCTIONS 13

COMPARISON OPERATORS
> greater than

>= greater than or equal to

< less than

<= less than or equal to

=== strict equal (use this one)

== coercive equal (AVOID)

!== strict not equal (use this one)

!= coercive not equal (AVOID)

CONDITIONALS & FUNCTIONS 14

TYPE COERCION

‣ JavaScript “feature” that attempts to make it possible to run a
comparison operation on two objects of different data types

‣ Results are sometimes unpredictable
‣ == and != use coercion if necessary to arrive at an answer — avoid

them
‣ === and !== do not use coercion — best practice is to use these rather

than the coercive operators

CONDITIONALS & FUNCTIONS 15

if STATEMENT

let weather = "sunny";

if (weather === "sunny") {
 console.log("Grab your sunglasses");
}

CONDITIONALS & FUNCTIONS 16

if/else STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 17

else if STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else if (weather === "rainy") {
 console.log("Take an umbrella");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 18

TERNARY OPERATOR

‣ A compact if/else statement on a single line
‣ “ternary” means that it takes 3 operands

CONDITIONALS & FUNCTIONS 19

TERNARY OPERATOR

(expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS 20

TERNARY OPERATOR

let name = (expression) ? trueCode : falseCode;

‣ Can produce one of two values, which can be assigned to a variable in
the same statement

CONDITIONALS & FUNCTIONS 21

BLOCK STATEMENTS
‣ Statements to be executed after a control flow operation are grouped

into a block statement
‣ A block statement is placed inside braces

{
 console.log("Grab your sunglasses.");
 console.log("Enjoy the beach!");
}

CONDITIONALS & FUNCTIONS 22

LOGICAL OPERATORS
‣ Operators that let you chain conditional expressions

&& AND Returns true when both left and right values are true

|| OR Returns true when at least one of the left or right values is true

! NOT Takes a single value and returns the opposite Boolean value

CONDITIONALS & FUNCTIONS 23

TRUTHY AND FALSY VALUES

CONDITIONALS & FUNCTIONS 24

FALSY VALUES
‣ All of these values become false when converted to a Boolean:

false
0
“”
NaN
null
undefined

‣ These are known as falsy values because they are equivalent to false

CONDITIONALS & FUNCTIONS 25

TRUTHY VALUES
‣ All values other than false, 0, "", NaN, null, and undefined become
true when converted to a Boolean

‣ All values besides these six are known as truthy values because they
are equivalent to true

‣ ‘0’ and ‘false’ are both truthy! (Why?)

CONDITIONALS & FUNCTIONS 26

BEST PRACTICES
‣ Convert to an actual Boolean value

‣ Adding ! before a value returns the inverse of the value as a
Boolean

‣ Adding !! before a value gives you the original value as a Boolean
‣ Check a value rather than a comparison

instead of  
if (name === false)

just use  
if (!name)

15 min 1. Write a program that outputs results based on users’ age.
Use the list of conditions in the app.js file.

2. BONUS 1: Rewrite your code to allow a user to enter an
age value, rather than hard-coding it into your program.
(Hint: Read up on the window.prompt method.)

3. BONUS 3: Rewrite your code to use a switch statement
rather than if and else statements.

EXERCISE TIMING

LAB — CONDITIONALS

‣ Pair
TYPE OF EXERCISE

‣ starter-code > 1-ages-lab
LOCATION

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

FUNCTIONS
CONDITIONALS & FUNCTIONS 28

CONDITIONALS & FUNCTIONS

Allow us to group a
series of statements

together to perform a
specific task

GROUP STEPS

We can use the same
function multiple times

REUSABLE

Not always executed
when a page loads.

Provide us with a way to
'store' the steps needed to

achieve a task.

STORE STEPS

FUNCTIONS

CONDITIONALS & FUNCTIONS 30

DRY =
DON’T
REPEAT
YOURSELF

CONDITIONALS & FUNCTIONS 31

FUNCTION DECLARATION SYNTAX

function name(parameters) {
 // do something
}

CONDITIONALS & FUNCTIONS 32

FUNCTION DECLARATION EXAMPLE

function speak() {
 console.log(“Hello!”);
}

CONDITIONALS & FUNCTIONS 33

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
 // do something
};

CONDITIONALS & FUNCTIONS 34

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS 35

ARROW FUNCTION SYNTAX

let name = (parameters) => {
 // do something
};

CONDITIONALS & FUNCTIONS 36

ARROW FUNCTION EXAMPLE

let speak = () => {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS

pickADescriptiveName();

Function name + parentheses

function pickADescriptiveName() {
 // do something
}

To run the function, we need to call it. We can do so like this:

CALLING A FUNCTION

EXERCISE

EXERCISE — WRITING FUNCTIONS

‣ Practice defining and executing functions
KEY OBJECTIVE

‣ Individual/paired
TYPE OF EXERCISE

4 min 1. Follow the instructions under Part 1
EXECUTION

‣ starter-code > 3-functions-exercise (part 1)
LOCATION

CONDITIONALS & FUNCTIONS 39

FUNCTION EXPRESSION VS FUNCTION DECLARATION
‣ Function expressions define functions that can be used anywhere in

the scope where they're defined.
‣ You can call a function that is defined using a function declaration

before the part of the code where you actually define it.
‣ Function expressions must be defined before they are called.

PARAMETERS
CONDITIONALS & FUNCTIONS 40

CONDITIONALS & FUNCTIONS 41

DOES THIS CODE SCALE?
function helloVal () {
 console.log('hello, Val');
}

function helloOtto () {
 console.log('hello, Otto')
}

function sayHello(name) {
 console.log('Hello ' + name);
}

sayHello('Val');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

CONDITIONALS & FUNCTIONS 42

USING A PARAMETER parameter

argument

CONDITIONALS & FUNCTIONS 43

USING MULTIPLE PARAMETERS

function sum(x, y, z) {
 console.log(x + y + z)
}

sum(1, 2, 3);
=> 6

multiple parameter names
separated by commas

CONDITIONALS & FUNCTIONS 44

USING DEFAULT PARAMETERS
function multiply(x, y = 2) {
 console.log(x * y)
}

multiply(5, 6);
=> 30 // result of 5 * 6 (both arguments)
multiply(4);
=> 8 // 4 (argument) * 2 (default value)

default value to set for parameter
if no argument is passed when
the function is called

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Given a function and a set of arguments, predict the output of a
function

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXECUTION

‣ starter-code > 3-functions-exercise (part 2)
LOCATION

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

8 min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXECUTION

‣ starter-code > 3-functions-exercise (part 3)
LOCATION

EXERCISE

EXERCISE — FUNCTIONS

‣ Describe how parameters and arguments relate to functions
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

EXECUTION

THE return STATEMENT
CONDITIONALS & FUNCTIONS 48

CONDITIONALS & FUNCTIONS

return STATEMENT
 49

‣ Ends function’s execution
‣ Returns a value — the result of running the function

CONDITIONALS & FUNCTIONS

return STOPS A FUNCTION’S EXECUTION
 50

function speak(words) {
 return words;

 // The following statements will not run:
 let x = 1;
 let y = 2;
 console.log(x + y);
}

CONDITIONALS & FUNCTIONS

console.log() return

‣ Write a value at any point in a
program to the browser console

‣ Helpful for developer in debugging
‣ Not seen by user or used by app

console.log() vs return

‣ Sends a value back wherever the current
statement was triggered

‣ Can use a function to get a value and then
use that value elsewhere in your app

‣ Does not appear in the console unless
you’re executing commands there

vs

z = 7

CONDITIONALS & FUNCTIONS

return in action

function sum(x,y) {
 return x + y;
}

let z = sum(3,4);

call sum() function,
passing 3 and 4 as
arguments with x=3 and y=4,

return the result
of x + y, which is 7

CONDITIONALS & FUNCTIONS 53

Exit Tickets!
(Class #3)

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES - REVIEW
 54

‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS 55

NEXT CLASS PREVIEW
Scope & Objects
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables
‣ Identify likely objects, properties, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation

Q&A
CONDITIONALS & FUNCTIONS 56

